Tag Archive | QSFP

Can I Use QSFP+ Optics on the QSFP28 Port?

100G Ethernet will have a larger share of network equipment market in 2017, according to Infonetics Research. But we can’t neglect the fact that 100G technology and relevant optics are still under development. Users who plan to layout 100G network for long-hual infrastructures usually met some problems. For example, currently, the qsfp28 optics on the market can only support up to 10 km (QSFP28 100GBASE-LR4) with WDM technology, which means you have to buy the extra expensive WDM devices. For applications beyond 10km, QSFP28 optical transceivers cannot reach it. Therefore, users have to use 40G QSFP+ optics on 100G switches. But here comes a problem, can I use the QSFP+ optics on the QSFP28 port of the 100G switch? If this is okay, can I use the QSFP28 modules on the QSFP+ port? This article discusses the feasibility of this solution and provides a foundational guidance of how to configure the 100G switches.

For Most Switches, QSFP+ Can Be Used on QSFP28 Port

As we all know that QSFP28 transceivers have the same form factor as the QSFP optical modules. The former has just 4 electrical lanes that can be used as a 4x10GbE, 4x25GbE, while the latter supports 40G ( 4x10G). So from all of this information, a QSFP28 module breaks out into either 4x25G or 4x10G lanes, which depends on the transceiver used. This is the same case with the SFP28 transceivers that accept SFP+ transceivers and run at the lower 10G speed.

QSFP+ can work on the QSFP28 ports

A 100G QSFP28 port can generally take either a QSFP+ or QSFP28 optics. If the QSFP28 optics support 25G lanes, then it can operate 4x25G breakout, 2x50G breakout or 1x100G (no breakout). The QSFP+ optic supports 10G lanes, so it can run 4x10GE or 1x40GE. If you use the QSFP transceivers in QSFP28 port, keep in mind that you have both single-mode and multimode (SR/LR) optical transceivers and twinax/AOC options that are available.

In all Cases, QSFP28 Optics Cannot Be Used on QSFP+ Port

SFP+ can’t auto-negotiate to support SFP module, similarly QSFP28 modules can not be used on the QSFP port, either. There is the rule about mixing optical transceivers with different speed—it basically comes down to the optic and the port, vice versa. Both ends of the two modules have to match and form factor needs to match as well. Additionally, port speed needs to be equal or greater than the optic used.

How to Configure 100G Switch

For those who are not familiar with how to do the port configuration, you can have a look at the following part.

  • How do you change 100G QSFP ports to support QSFP+ 40GbE transceivers?

Configure the desired speed as 40G:
(config)# interface Ethernet1/1
(config-if-Et1/1)# speed forced 40gfull

  • How do you change 100G QSFP ports to support 4x10GbE mode using a QSFP+ transceiver?

Configure the desired speed as 10G:
(config)# interface Ethernet1/1 – 4
(config-if-Et1/1-4)# speed forced 10000full

  • How do you change 100G QSFP ports from 100GbE mode to 4x25G mode?

Configure the desired speed as 25G:
(config)# interface Ethernet1/1 – 4
(config-if-Et1/1-4)# speed forced 25gfull

  • How do you change 100G QSFP ports back to the default mode?

Configure the port to default mode:
(config)# interface Ethernet1/1-4
(config-if-Et1/1)# no speed

Note that if you have no experience in port configuration, it is advisable for you to consult your switch vendor in advance.

Conclusion

To sum up, QSFP+ modules can be used on the QSFP28 ports, but QSFP28 transceivers cannot transmit 100Gbps on the QSFP+ port. When using the QSFP optics on the QSFP28 port, don’t forget to configure your switch (follow the above instructions). To make sure the smooth network transmission, you need to ensure the connectors on both ends are the same and no manufacturer compatibility issue exists.

Original source : http://www.chinacablesbuy.com/can-use-qsfp-optics-qsfp28-port.html

40GBASE-LR4 CWDM vs. 40GBASE-LR4 PSM QSFP+ Transceiver

In response to the increasing bandwidth demands, the IEEE certificated 802.3ba Ethernet standard paving the way for the introduction of 40G and 100G Ethernet operations. Whether you believe it or not, the era of 40G Ethernet is upon us. 40GBASE QSFP+ (quad small form factor pluggable) portfolio offers customers a wide variety of high-density and low-power 40 Gigabit Ethernet connectivity options for data center, high-performance computing networks, enterprise core and distribution layers, etc. For instance, 40GBASE-SR4 and 40GBASE-LR4 QSFP+ transceiver are the common 40 Gigabit Ethernet connectivity options. 40GBASE-SR4 transceiver usually uses multimode fiber for short-reach application, while 40GBASE-LR4 QSFP+ is mostly favored by users for long-hual application. However, there are two links for 40GBASE-LR4 standards. One is coarse wavelength division multiplexing (CWDM). The other is parallel single-mode fiber (PSM). What’s the difference between them? In this article, a brief contrast between them will be introduced to you.

40GBASE-LR4 CWDM QSFP+ Transceiver

The 40GBASE-LR4 CWDM QSFP+ transceiver is compliant to IEEE P802.3ba 40GBASE-LR4 standard. This QSFP module supports link lengths of up to 10km over single-mode fiber (SMF) with duplex LC connectors. This transceiver converts 4 inputs channels of 10G electrical data to 4 CWDM optical signals by a driven 4-wavelength distributed feedback (DFB) laser array, and then multiplexes them into a single channel for 40G optical transmission, propagating out of the transmitter module from the SMF. Reversely, the receiver module accepts the 40G CWDM optical signals input, and demultiplexes it into 4 individual 10G channels with different wavelengths. The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm (defined as members of the CWDM wavelength grid in ITU-T G694.2). Each wavelength channel is collected by a discrete photo diode and output as electric data after being amplified by a transimpedance amplifier (TIA).

CWDM-QSFP

40GBASE-LR4 PSM QSFP+ Transceiver

Unlike CWDM QSFP+ transceiver using a LC connector, PSM QSFP+ is a parallel single-mode optical transceiver with an MTP/MPO fiber ribbon connector. It also offers 4 independent transmit and receive channels, each capable of 10G operation for an aggregate data rate of 40G on 10km of single-mode fiber. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. In terms of a PSM QSFP+, the transmitter module accepts electrical input signals compatible with common mode logic (CML) levels. All input data signals are differential and internally terminated. The receiver module converts parallel optical input signals via a photo detector array into parallel electrical output signals. The receiver module outputs electrical signals are also voltage compatible with CML levels. All data signals are differential and support a data rates up to 10.3G per channel.

40G-PSM-QSFP

40GBASE-LR4 QSFP+—CWDM vs. PSM 

As noted before, 40GBASE-LR4 CWDM QSFP+ transceivers use a duplex LC connector via 2 optical single-mode fibers to achieve 40G without making any changes to the previous 10G fiber cable plant. However, 40GBASE-LR4 PSM QSFP+ transceivers use an MTP/MPO fiber ribbon connector via 8 optical single-mode fibers to reach 40G. Obviously, CWDM QSFP+ is a more cost-effective solution for 40G connectivity.

What’s more, in terms of the inner structure of an optical transceiver module, PSM QSFP+ uses a single uncooled CW laser that splits its output power into four integrated silicon modulators, which is much inexpensive than CWDM QSFP+. Besides, its array-fiber coupling to an MTP connector is relatively simple. A picture comparing the key differences between CWDM and PSM is shown below:

two links of QSFP+ 40GBASE-LR4

Additionally, the caveat is that the entire optical fiber infrastructure within a data center, including patch panels, has to be changed to accommodate MTP connectors and ribbon cables, which are more expensive than conventional LC connectors and regular SMF cables. Not to mention that cleaning MTP connectors is not a straightforward task.

Summary

To sum up, PSM and CWDM are the two links of 40GBASE-LR4 QSFP+ transceivers. Both of them can support a link distance of 10km. However, 40GBASE-LR4 CWDM QSFP+ are more common than 40GBASE-LR4 PSM QSFP+ because of its performance and low cost. Fiberstore offers a wide brand compatible 40G CWDM QSFP+ transceivers. Each of our fiber optic transceivers has been tested to ensure its compatibility and interoperability. For more information or quotation, please contact us directly.