Tag Archive | fiber optic cable

Decoding Grade A Connector in Fiber Optic Cables

With the advances in fiber optic technology and transmission systems, reliable cabling systems are becoming even more important. Active optical equipment, which is often worth hundreds of thousands of dollars, is all connected into the network via the humble fiber optic patch cord or patch lead. The risk of network downtime due to unreliable cabling is one that should be avoided. Therefore, these types of networks, along with many other Data Center and high speed Commercial networks require reliable cabling infrastructure in order to maximize performance and to ensure long term reliability. Today’s article will introduce Grade A optical fiber cables.

What Are Grade A, Grade B, Grade C Fiber Optic Connector?
IEC standards dictate the connector performance requirement for each grade of fiber optic patch cord connector. These standards guide end users and manufacturers in ensuring compliance to best practices in optical fiber technology.

According to IEC 61753 and IEC 61300-3-34 Attenuation Random Testing Method, Grade C connectors have the following performance characteristics.
Attenuation: 0.25dB-0.50dB, for >97% of samples.
Return Loss: 35dB

According to IEC, Grade B connectors have the following performance characteristics
Attenuation: 0.12dB-0.25dB, for >97% of samples.
Return Loss: 45dB

Grade A connector performance (which is still yet to be officially ratified by IEC) has the following performance characteristics. Average Insertion loss of 0.07dB (randomly mated IEC Standard 61300-3-34)and a Maximum Insertion Loss of 0.15db max, for >97% of samples.

While the return loss using IEC 61300-3-6 Random Mated Method is >55dB (unmated–only angled connectors) and >60dB (mated), this performance level is generally available for LC, A/SC, SC and E2000 interfaces.

How are Grade A Connectors on Optical Fiber Patch Cords Identified?
Grade A fiber optic patch cords are identified with the letter ‘A’ printed on the connector side. The symbol is actually the letter ‘A’ enclosed within a triangle (“A”).

This identification marker is proof that you are using a high quality fiber optic patch cord. Grade A connectivity is also available for Optical fiber through adapters. The same rule applies for A grade fiber optic Adapters which also have the letter “A” clearly marked.

What Does a Fiber Optic Patch Cord Meet the Grade A Criteria?
Firstly a high quality Grade A fiber optic patch cord begins with using high quality zirconia ferrules and high quality optical fiber cable. However, the manufacturing and testing process must be first class.

In order to meet the stringent performance criteria of ‘A’ Grade connectors on patch cords, high quality manufacturing, inspection, testing and Quality Assurance (QA) procedures are required. Without the proper expertise in optical fiber technology, many other manufacturers are unable to meet these requirements.

To consistently achieve ‘A’ Grade performance, high accuracy testing using state of the art test equipment as well as constantly assessing testing methods are all required. Analysing and ensuring mechanical end face limits and that parameters are within range, ensures that Grade A connectivity is achieved.

Grade A connectors offer virtually the same IL performance as a fusion splice, with the added benefit of providing a physical contact which can be connected, disconnected and moved when required.

Conclusion
It is important to fully understand the benefits of using reliable, good quality optic fiber patch cords and connectivity. Good quality connectors with low Insertion Loss will meet large bandwidth and high speed requirements of the latest active optical equipment allowing large streams of data to be transmitted reliably over long distances. Grade A connectors on optical fiber patch cords are an example of the advances in this technology.

Comparison Between Different Fiber Optic Cable Types

Nowadays more and more fiber-based networks have been built in the backbone and risers environment. Both multimode and single-mode fibers are available for the applications. But different fiber types have briefly different limitations for speed and maximum distance. These characteristics they possess and the way cause the fiber to operate determine the application to which a given fiber is most appropriate. Today’s article will offer you some information about the classification of fiber optic cables and the difference in speed and distances.

Difference Between OM Multimode Fibers

Multimode fibers, according to the specification and briefly by their bandwidth performance are commonly classified into OM1, OM2, OM3 and OM4. Each multimode type has different transmission data rates, link length and bandwidth for specific protocols, applications and transceiver types. Table 1 outlines the international standards organization classification for multimode fiber which describe the strength for speed and distance.

multimode-fiber

From the above table, we can see that OM1 is the 62.5-micron fiber, while OM2/OM3/OM4 are the 50-micron multimode fibers. OM1 multimode fiber was used to be the most common multimode fibers in the 80’s and 90’s. However, it is generated accepted that OM1 will soon be obsolete for the lowest data carrying capacity and shortest distance limitations as compared with other multimode fibers. As for the 50-micron multimode fibers, they are the most commonly used fiber types today, especially the OM3 and OM4 cables. Why do the multimode fibers with a smaller diameter have better performance than the large one? Please read on.

In terms of the performance in 50-micron and 62.5-micron multimode fibers, the difference lies in the fibers’ bandwidth, or the signal-carrying capacity. Bandwidth is actually specified as a bandwidth-distance product with units of MHz-km that depends on the data rate. As the data rate goes up (MHz), the distance that rate can be transmitted (km) goes down. Thus, a higher fiber bandwidth can enable you to transmit at higher data rates or for longer distances. For example, 50-micron multimode fiber offers nearly three times more bandwidth (500 MHz-km) than FDDI-grade 62.5-micron fiber (160 MHz-km) at 850 nm.

While fiber bandwidth is a critical factor in determining link length and data rate, transmitter and receiver characteristics also matters. For 850-nm Gigabit Ethernet, these bandwidth values support link lengths of 220 meters over 62.5-micron fiber and 550 meters over 50-micron fiber. For example, Cisco GLC-SX-MM operating at 850-nm can support a link distance of 550 m over 50-micron fiber (OM2). Today, the 850-nm operating window is increasingly important, as low-cost 850-nm lasers such as verti cal-cavity surface-emitting lasers (VCSELs) are becoming widely available for network applications. VCSELs offer users the ability to extend data rates at a lower cost than long-wavelength lasers. Since 50-micron multimode fiber has higher bandwidth in the 850-nm window, it can support longer distances using these lower-cost VCSELs. Thus, 50-micron multimode fiber is more suitable for fiber backbones running Gigabit Ethernet and higher-speed protocols over longer distances.

Multimode vs. Single-mode Fibers

Single-mode fiber, owing to the more expensive electronics required in the network, is usually used for much greater-reach applications but not a cost-effective investment for future application in building. As the multimode fibers can be divided into OM1, OM2, OM3 and OM4 fiber types, single-mode fibers usually come in OS1 and OS2 fibers. For the detailed information, please look at the article “The Truth About OS1 and OS2 Optical Fiber”.

Jacket color is sometimes a simple method to distinguish multimode cables from single-mode ones. The standard TIA-598C recommends, for non-military applications, the use of a yellow jacket for single-mode fiber, and orange or aqua for multimode fiber, depending on type as you can seen in the Figure 2.

fiber-optic-cable

Besides the jacket color, the difference between multimode and single-mode optical fiber (9-mircon core) is that the former has much larger core diameter; much larger than the wavelength of the light carried in it. Because of the large core and the possibility of large numerical aperture, multimode fiber has higher “light-gathering” capacity than single-mode fiber. In practical terms, the larger core size simplifies connections and also allows the use of lower-cost electronics such as light-emitting diodes (LEDs) and vertical-cavity surface-emitting lasers (VCSELs) which operate at the 850 nm and 1300 nm wavelength (single-mode fibers used in telecommunications typically operate at 1310 or 1550 nm). However, compared to single-mode fibers, the bandwidth & distance product limit of multimode fiber is lower. Because multimode fiber has a larger core-size than single-mode fiber, it supports more than one propagation mode; hence it is limited by modal dispersion, while single mode is not.

fiber-cable-type

The light sources used in these two cable types also plays a critical role in the performances. The LED light source sometimes used with multimode fiber produce a range of wavelengths and these each propagate at different speeds. This chromatic dispersion is another limit to the useful length for multimode fiber optic cable. In contrast, the lasers used to drive single-mode fibers produce coherent light of a single wavelength. Due to the modal dispersion, multimode fiber has higher pulse spreading rates than single mode fiber, limiting multimode fiber’s information transmission capacity. Thus, single-mode fibers are often used in high-precision scientific research because restricting the light to only one propagation mode allows it to be focused to an intense, diffraction-limited spot.

Conclusion

The growth in subscribers’ demand for more sophisticated electronics and web-connected services increases the requirement for information storage and cloud technology. End-users also want to know how to choose the right cable type for your network application. Therefore , I hope after reading this article you might have learned something from it.

Why Recommend Fiber Over Copper in 2017?

2017 is coming in less than a month, looking back, in the communication field, the old remaining dilemma between fiber and copper is still left behind. People are struggling about whether they should hold on to the tried-and-tested copper cables that are sufficient so far, or make the leap into the future, and go fiber optic. From a technical perspective, the case for switching to fiber is growing ever stronger. Using a fiber system will lead to more bandwidth, reliability, less down time and end up saving you money. Today’s article will make you understand the trend for switching to fiber.

fiber-optic-over-copper-cable

More Bandwidth, Faster and Longer

People are aware that fiber optics is winning out over copper because of its higher performance, namely more bandwidth, faster speed and longer link distance.

Bandwidth decides how much data you can receive and send. Copper cable that can be used for 10 Gigabit cabling, and 100 Gigabit cables is at the point of topping out, but these data rates can be sent only for very short distances between servers in data centers. While with fiber you can transmit more data over greater distances, and if you’re preparing for fiber now, you’ll also start to see remarkable differences in the not too distant future.

copper-vs-fiber

Have you ever though of the reason why fiber can transmit at higher speed for longer distances then copper cables? In short, copper cable uses the electric waves to carry the signal data, the phrase of the wave are modulated in sophisticated patterns to try and send as much data as possible through the continuous signal. This works well for low amount of data, but the copper cable will start to break down if you get to higher bandwidths and greater distances. As for fiber cable, it uses light to carry signals with transmitters and receivers at both ends. Light loses much less power than an electrical signal, so fiber can send data over much greater distances.

Fiber is More Reliable Than Copper

Besides the above reasons, another big reason that makes enterprises choose to use fiber other than copper is the reliability of the fiber optic system. If you put too many copper wires in close proximity, or just put them near any significant power sources, the signals can be easily interfered and read by others. Brazilian E-Voting machines were compromised using Van Eck Phreaking, with hackers able to read secret votes through these side-band electronic-magnetic emissions from the machines.

But fiber doesn’t suffer from the same problems as copper, so maintenance issues are rare. You can put multiple fiber optics next to each other and there won’t be any interference, and you can route them wherever in your building and they’ll still work perfectly. In fact, fiber can be routed through a building near power line conduits without any degradation of the signal. Therefore, it is not the good choice to still stay at copper wire because of its crosstalk where data from one wire gets mixed up with data on another.

Fiber is Safer

There are also safety issues, for people and equipment, with copper cabling which are no doubt at the forefront of your tech’s mind when they are telling you to go for a fiber installation. Any misconfiguration of your system, or out of the blue power surge, and having everything wired together with copper suddenly becomes a serious problem. For example, a lightening strike jumped through copper cabling between buildings, can destroy all the electrical equipment in both buildings.

Light doesn’t leak, and if it does you’ll know about it. Someone splicing into the fiber will leave a tell-tale signal as the attenuation will drop, just as when fiber is damaged. Using a testing technique called optical-time domain reflectometry, you can easily find where someone has spliced into the system and hunt the spies down!

In general, it’s also easier to test if something does goes wrong. The way light travels through glass is better understood than how electricity flows through copper, so any diagnostics are straightforward.

Fiber is More Flexible Than Copper

Fiber optic cable is composed of a thin, flimsy strand of glass, which is very delicate, needing installation by specialists in white gloves. And it can be destroyed by any clumsy-fingered techie thereafter. However, it is stronger than copper cables (made of a thick cord of metal).

Even though the fiber optic cable is lightweight and thin, it can be pulled through buildings with more force than copper, and can take a dunking in water, and is more flexible so can negotiate tricky building geography. All the while being lighter and thinner than copper, so it can be installed with more ease anywhere in your building.

Because it’s so lightweight and thin, it takes up less space, and is easier to handle. If you want to scale a copper wired system then you need more and more of bigger and bigger cabling. With an optical system, there is almost no difference in size between the diameter and weight of different size fibers, and because a smaller fiber can carry so much more data than copper cables, you need less overall.

Fiber Will Cost You Less

When people suggest you switching to fiber, you might not think that they take budget into account, but in the long run, fiber optic system will cost your company less.

Because fiber is more resilient, there is less downtime on the network. Because of all the maintenance and legacy issues with copper wires, you’ll always have downtime while an ISP technician is down a manhole somewhere splicing together copper cables that have been damaged.

There’s also less hardware to go with the fiber optic system. Because data can be transmitted over fiber for longer distances, you don’t need the extra power boosters, junctions, and terminals that are needed for copper cabling. Your fiber can be brought directly to your office with no need for multiple connections.

Fiber is new technology that is constantly evolving and a hot area of research. We believe that in 2017, fiber optic based system will be more popular among users.

Guide to Several Materials in Fiber Optic Cable Construction

Fiber optic cable is considered as one of the most effective transmission medium today for safe, and long-reach communications, and it also offers a number of advantages over copper. In general, fiber optic cable consists of a core, cladding, coating, strengthening fibers, and a cable jacket, which has been clearly introduced in the previous article. Today’s article will focus on the several materials in fiber optic cable construction, as well as their features and applications.

PVC (Polyvinyl Chloride)

Polyvinyl Chloride (PVC) is one of the most commonly used thermoplastic polymers in the world. The PVC cable is typically used for patch connections in the data center, wiring closet, and at the desktop. PVC is produced in two general forms, first as a rigid or unplasticized polymer (RPVC or uPVC). The following image shows a ST single-mode pre-Terminated cable (0.9mm PVC Jacket).

2m-upc-singlemode-48-fiber-multi-fiber-pre-terminated-cable-0-9mm-pvc-jacket

Features:

  • Good resistance to environmental effects. Some formulations are rated for -55 to +55.
  • Good flame retardant properties. Can be used for both outdoor and indoor fiber optic cables.
  • PVC is less flexible than PE (Polyethylene).

PE (Polyethylene)

Polyethylene is a kind of polymer that commonly categorized into one of several major compounds of which the most common include LDPE, LLDPE, HDPE, and Ultrahigh Molecular Weight Polypropylene. Polyethylene fiber has a round cross section and has a smooth surface. Fibers made from low molecular weight polyethylene have a grease like handle.

Features:

  • Popular cable jacket material for outdoor fiber cables
  • Very good moisture and weather resistance properties
  • Very good insulator
  • Can be very stiff in colder temperatures
  • If treated with proper chemicals, PE can be flame retardant.

Kevlar (Aramid Yarn)

The word Aramid is a generic term for a manufactured fiber in which the fiber forming substance is a long chain synthetic polyamide in which at least 85% of the amide linkages are attached directly to the two aromatic rings as defined by the U.S. federal trade commission. Kevlar fiber is based on poly (P-phenylene terephthalamide). Aramid yarn is the yellow fiber type material found inside cable jacket surrounding the fibers. It can also be used as central strength members.

Features:

  • Aramid yarn is very strong and is used in bundle to protect the fibers.
  • Kevlar is a brand of aramid yarn. Kevlar is often used as the central strength member on fiber cables which must withstand high pulling tension during installation.
  • When Kevlar is placed surrounding the entire cable interior, it provides additional protection for the fibers from the environment.

Steel Armor

The steel armored fiber cable, using light-steel tube, can provide maximum bend radius, strong protection and flexible cabling. Steel armor jacket is often used on direct burial outdoor cables and it provides excellent crush resistance and is truly rodent-proof. Since steel is a conductor, steel armored cables have to be properly grounded and loss fiber optic cable’s dielectric advantage. Armored fiber optic cable are often used in the outdoor direct burial cables and for the industrial environment where cables are installed without conduits or cable tray protection. The following image shows a single-mode armored fiber optic cable.

1m-lc-upc-to-lc-upc-duplex-3-0mm-pvcofnr-smf-armored-fiber-patch-cable

Various types of these light-steel armored fiber cables are in stock in FS.COM, including pre-terminated armored fiber patch cables, armored fiber trunk cables and field-terminated armored fiber cables for both indoor and outdoor applications.

Features:

  • Provides excellent crush resistance for outdoor direct burial cables
  • Protects cables from rodent biting
  • Decreases water ingress into the fiber which prolongs the fiber cable’s life expectancy

Central Strength Member

Strength member is used to increase the tensile force that will be applied on the cable during installation. Strength member will take the pulling force and will keep the fibers safe during installation. For large fiber count cables, a central strength member is often used.

The central strength member provides strength and support to the cable. During fiber optic cable installation, pulling eyes should always be attached to the central strength member and never to the fibers. On fiber splice enclosure and patch panel installations, the cable central strength member should be attached to the strength member anchor on the enclosure or patch panel.

Conclusion

When you choose to use which type of the fiber optic cables, the fiber optic cable construction, along with the mechanical and environment requirements should all be taken into account. All the above materials in the fiber optic cable construction are specifically required to meet the network infrastructure. FS.COM fiber optic cables come in various types with detailed specifications displayed for your convenient. These quality cables are designed with best-in-class performance. For more information about fiber optic cables or patch cords, you can visit fs.com.

Do You Know About the Cable Clip?

Fiber optic cables are almost ubiquitous in this highly technological day and age. In your household network, you may find cables running through televisions sets, DVD players, desktop computers, speakers, and video projectors. Optical cables are the must-have components in insuring the smooth network connectivity. What’s more, with the increasing requirement of the network speed, more and more cables will be deployed. Therefore, cables must be kept organized and out of the way to prevent interruptions and obstructions. One of the best method to keep numerous and lengthy cables in order, in any space, is to utilize a cable clip. This article will provide some information about what you need to know about the cable clip and its function.

Overview of Fiber Optic Cable

Before we come to the introduction of the cable clip, let’s firstly have a review of the fiber optic cable. Fiber optic cable may resemble the copper wire cable, but what lies beneath the sheath is different. An optical fiber cable is a cable containing one or more fibers that are individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable will be deployed. Cables have countless applications in business and industrial settings based on different type of cables. In work environments, they can be found snaking behind computers, telephones, printer stations, and other electronic devices. And in industrial sites, cables are necessary for a wide range of markets: electrical, factory automation, natural gas production, steel, refining and petrochemical, pulp and paper, and wind, power and solar generation.

fiber-optics-fs-com

The primary role of the fiber optic cable is to enable functions like communication, signal transmission, and instrumentation and control, and are essential components of transmission devices, multi-point and single-ended networks, and converters and repeaters. In terms of cable installation, cables should never be allowed to hang freely for long distances or to press against edges. There are some guidelines that installers must keep in mind. In order to well organized the high-density cables, some cable management elements are needed. FS.COM custom fiber patch cords are made to meet your special requirement just as the image shows above. The following part will go on to talk about one of the items used in cable management—cable clip.

What Is the Cable Clip?

A cable clip is a device that manages wires and cables and secures them to a fixed point on a surface, like a wall, ceiling or floor. A wide range of cable clips is available to control cables of all sizes and shapes, in almost any number, in both home and industrial applications. The following shows different size of the cable clips.

cable-clip

How Does It Work?

Generally, a cable clip contains two important components: one mechanism for gathering cables together securely, and another provision for holding the entire cable clip (along with the gathered cables) fast against a single spot on a surface so that the entire bundle stays in place. Some manufacturers design products so that these two mechanisms come separately, although combining them provides better utility and a number of advantages.

One particular type of cable clip is designed as a single piece of material (like plastic) to hold wires and cables on one end, while a hole is provided on another end through which a nail can be used to secure the clip to a wall or other surface. However, this type of cable clip may not be suitable for surfaces that should not be damaged by hammering a nail into them.

In such cases (especially for instances wherein securing the cables together is only meant to be temporary), another type of cable clip may be more appropriate — one that comes with an attached adhesive area that can be easily stuck to the surface without creating a hole or damaging it in another way. Once the cables can be let down, the cable clip can be simply removed.

Conclusion

To sum up, cable management can have a significant impact on the management in a data center or any network infrastructure. Keeping network cables and optical devices neatly managed has been more and more critical for the effective management as density and application complexity have proliferated. The cable clips are indispensable to ensure the cables well managed and laid in order. FS.COM offers a full range of cable management accessories including fiber splice tray, cable manager & wire duct, cable management rings, cable ties, wire loom and cable wire markers, cable lacing bars and so on. All of our products, especially the fiber optic cables (like LC to SC patch cord and LC to LC patch cord) are warmly welcomed by customers. If you want to know more about our products, you can send your request to us.