Introduction to Semiconductor Optical Amplifier (SOA)

Optical amplifier, with the introduction in 1990s, conquered the regenerator technology and opened doors to the WDM technology. It is mainly used to amplify an optical signal directly, without the need to first convert it to an electrical signal. There are many types of optical amplifiers, namely Raman amplifiers, erbium doped-fiber amplifiers (EDFAs), and semiconductor optical amplifier (SOA). This article will make a clearer introduction to SOA amplifier, and analyze its advantages and disadvantages.

transport network system

The Basics of Semiconductor Optical Amplifier (SOA)

SOA optical amplifiers use the semiconductor as the gain medium, which are designed to be used in general applications to increase optical launch power to compensate for loss of other optical devices. Semiconductor optical amplifiers are often adopted in telecommunication systems in the form of fiber-pigtailed components, operating at signal wavelengths between 0.85 µm and 1.6 µm and generating gains of up to 30 dB. Semiconductor optical amplifier, available in 1310nm, 1400nm, 1500nm, 1600nm wavelength, can be used with singlemode or polarization maintaining fiber input/output.

Key Points of SOA Amplifier

  • 1310 nm, 1400 nm, 1550 nm and 1610 nm wavelength selectable
  • High fiber-to-fiber gain of 20 dB
  • Up to 16 dBm output
  • 1 MHz with 10 ns pulse width (optional)
  • PM Panda fiber input/output (optional)
  • Similar to lasers, but with non-reflecting ends and broad wavelength emission
  • Incoming optical signal stimulates emission of light at its own wavelength
  • Process continues through cavity to amplify signal

Working principle of SOA amplifier

The basic working principle of a SOA is the same as a semiconductor laser but without feedback. SOAs amplify incident light through simulated emission. When the light traveling through the active region, it causes these electrons to lose energy in the form of photons and get back to the ground state. Those stimulated photons have the same wavelength as the optical signal, thus amplifying the optical signal.

working principle of SOA
SOA Over EFDA in DWDM Networks

As the solution below, 120km Metro Networks by Using an SOA amplifier. You may wonder why not use EDFA in the above networks.

SOA amplifier

Theoretically, SOA optical amplifiers are not comparable with EDFA in the terms of performance. The noise figure of SOA optical amplifier is typically higher, the gain bandwidth can be similar, SOAs exhibit much stronger nonlinear distortions in the form of self-phase modulation and four-wave mixing. Yet, the semiconductor optical amplifier is of small size and electrical pumped, which is often less expensive than EDFA. Additionally, SOA can be run with a low power laser.

How to Choose SOA Optical Amplifier?

When selecting SOA amplifier, you have to check the every detailed parameter in the product data sheet. But, seriously, do you understand it? No, please read the following part.

The key parameters used to characterize a SOA amplifier are gain, gain bandwidth, saturation output power and noise.

Gain is the factor by which the input signal is amplified and is measured as the ratio of output power to input power (in dB). A higher gain results in higher output optical signal.

Gain bandwidth defines the range of bandwidth where the amplification functions. A wide gain bandwidth is desirable to amplify a wide range of signal wavelengths.

Saturation output power is the maximum output power attainable after amplification beyond which no amplification is reached. It is important that the SOA has a high power saturation level to remain in the linear working region and to have higher dynamic range.

Noise defines the undesired signal within the signal bandwidth which arises due to physical processing in the amplifier. A parameter called noise figure is used to measure the impact of noise which is typically around 5dB.

Conclusion

SOA amplifier is the economic, high-performance solution for long-hual WDM networks. SOA amplifier, due to its features, can be used in Booster and in-line amplification, optical network, general purpose test and measurement and fiber sensing. However, it also has its limit. In semiconductor optical amplifiers, electron-hole recombination occurs which will affect the performance of the whole line. FS offers EDFA, SOA, Raman optical amplifiers of excellent quality and price. For more detailed information, please feel free to contact us.

Original Source: Semiconductor Optical Amplifier

OM5 Fiber Cable – Is It Worthwhile for 40G/100G SWDM4 Cabling Solution

OM5 multimode fiber, as the advanced version of the old OM4 fiber, is thought to be the future of multimode cabling. It is the Wideband multimode fiber (WBMMF) that can support wavelengths between 850nm and 953nm. It is also designed to support the short wavelength division multiplexing (SWDM)—one of the new technology for 40G/100G connection. However, will it be the ideal transmission medium for 40GbE/100GbE cabling solution?

How OM5 Fiber Developed

Over the past thirty years, multimode fiber has been evolved from OM1 to OM5 multimode fiber. OM1 and OM2 fiber, released at the end of 20th century, are the legacy 125µm multimode fiber that are working fine in 10Mb/s, 100Mb/s and 1000Mb/s cabling solution. However, with the high speed data rate like 10Gb/s, 40Gb/s, 100Gb/s and beyond coming into our life, multimode cabling (OM1 and OM2 ) with LEDs can not meet the requirement. The laser-optimized OM3 and OM4 has been developed subsequently. OM4 fiber cable, with the internal construction, possess higher modal bandwidth than OM3 fiber, which is commonly used fiber medium for 40G/100G connection.

OM1-OM5 fiber

But there is a problem. In a 40G layout, fiber optic technicians have to use one MTP fiber and 4 OM4 duplex fibers (total 8 fibers), which is obvious not preferable for high-density cabling networks. So here comes the OM5 fiber. By utilizing SWDM technology, it can greatly reduce fiber count into 2 fibers (4×10G) in 40G networks, 2 fibers (4×25G) in 100G links. OM5 is the lime green multimode fiber, displayed as follows.

OM5 Fiber

OM5 Fiber for 40G/100G SWDM4 Cabling Solution

Reduce fiber count for 40G/100G connection—OM5 fiber as the advanced version of OM3/OM4 fiber, is backward compatible with OM3 and OM4 fiber cabling. And with the SWDM technology, this fiber can only use two OM5 fibers and 40/100G SWDM4 transceivers in 40G and 100G SWDM4 cabling.

Longer-transmission distance—OM5 is designed and specified to support at least four WDM channels at a minimum speed of 28Gbps per channel through the 850-953 window. Compared to OM4 fiber cable, it is specified only to work at the 850 nm window. OM5 multimode fiber delivers higher value to network owners for distances up to 440m (for data rates up to 40Gbps), and allows for smooth migration to 400Gbps for distances up to 150m. While OM4 fiber cover the distance of 350m, 100m over 40G/100G respectively.

Easy management & installation—in 40G/100G network, multimode connectivity together with MTP/MPO systems makes for a more user-friendly solution for data centers as well as building and campus backbones, especially in cable installation, troubleshooting, cleaning, and overall maintenance.

FS OM5 Cable Solution

FS offer Lime green OM5 fibers. All our OM5 fiber cables are guaranteed by End Face Geometry Test, Continuity Test, and 3D interferometry Test to be high quality. Available in LC, SC, FC, ST, etc. Connectors, and the cable length of OM5 fiber can be provided from less than 1 meter to more than 100 meters, which will well meet the needs for 400m transmission of 40G SWDM4 QSFP+ module and 100m transmission of 100G SWDM4 QSFP28 module, as well as the links on the same rack or row.

fiber optic cable

Not only the OM1/OM2/OM3/OM4/OM5 multimode fibers are provided at FS.COM, but fiber optic cables like singlemode fibers (OS1/OS2) , Twinax copper cables are also offered. For more information about the cost-effective fiber patch cables, Please feel free to contact us via http://www.fs.com.

Original Source: om5-fiber-cable-is-it-worthwhile-for-40g100g-swdm4-cabling-solution

Cisco Vs Huawei – Which One is the better Choice for Ethernet Switches?

Cisco, as the big brother in the telecom industry, has dominated the market of networking devices (like routers and switches) for a long time. No one can compete with him. Huawei, however, is the rising star in Chinese market. It ranked 83rd in the latest Fortune 500 list on July 23, 2017. Many people assume that in the near future, Huawei will lead the world instead of Cisco. Thus, in this article, we are going to analyze the strength of Cisco and Huawei, along with the differences between Cisco and Huawei switches.

Cisco Vs Huawei

Cisco Vs Huawei — Brand Awareness and Market Share

Both Cisco and Huawei are the relatively young enterprises, which are founded in 1980s. With 30 years’ development, Cisco was at the top of respondent edge/core router and CES manufacturer leadership scores. Cisco systems mainly offers networking devices, networking management, Cisco IoS/NX-OS software, storage area networks, wireless equipment, data center devices, and interface & modules, etc.

Cisco Vs Huawei

The above table shows the basics of the two companies.

According to Fortune 2017, Huawei, with the revenues of $78.5108 billion rank No.83 in Fortune 500 List, which is also the first time in the top hundred. Huawei is famous for mobile and fixed broadband networks. Recently, their optical switches, multimedia technology, tablet computers also wins the heart of customers. Ren zhengfei, founder of the Huawei Technology, once said, Huawei’s secret of success is our focus and dedication to our customers. Huawei will embrace a better future.

IHS Markit Analysis

In the 2016 study, Cisco along with Juniper, Huawei and Nokia (including Alcatel-Lucent), form a top tier clearly separated by a wide margin from the other manufacturers. There was a big gap between these four and their competitors, with the sole exception being price-to-performance ratio.

Cisco Vs Huawei
We ask carrier survey respondents to rate their familiarity of service provider edge/core router and /or CES manufactures.

Looking at the individual manufacturer selection criteria, for technology innovation and product roadmap, Cisco and Nokia were numbers one and two, respectively. And for price-to-performance ratio, Huawei at number one.

Cisco Vs HuaweiAnd for the above table, we can see Cisco drops share in router market; Huawei, Juniper gain & market is rising.

For the full year 2016, Cisco declined 3.7% over 2015, while recording 57.0% market share (compared to 60.6% in 2015). In the hotly contested 10GbE segment, Cisco held 53.0% of the market in 4Q16, finishing essentially flat over the previous quarter.

Huawei continued to perform well in both the Ethernet switch and the router markets. For the full year 2016, Huawei’s Ethernet switch revenues grew 61.8%, leading to a market share of 7.0%, compared to 4.4% in 2015.

Why Would People Go for Huawei?

The reasons that Huawei becomes so strong are not only due to the support from the government, but also because of its powerful local support capability. There are bugs in the high-end devices, and this is inevitable. If two Cisco engineers are assigned to solve the problem, Huawei can assign 20 engineers to fix it. Besides, if one major client like CT has customized requirements, Huawei can ask product engineers to work in the CT office as soon as possible, even Cisco cannot do this. This kind of quick response ability is obviously the advantageous factor for Huawei to exceed Cisco in its own home court.

Cisco Vs Huawei — Switch Comparison

There is some relationship between Cisco Switch and Huawei Switch. So Cisco Switch or Huawei Switch? The following comparison simplifies the relationship of Cisco switch and Huawei switch, which can help you select the most suitable switch devices for your office, or company and organizations.

Cisco Switches Vs Huawei Swicthes

The popular series of Cisco switches are the enterprise switches, Catalyst series and Nexus switches. Cisco Catalyst series includes 2960 series, 3650 series, 3850 series, 4500E series, etc. Cisco Nexus series includes 9000 series, 7000 series, 6000 series, 5000 series, 3000 series, 2000 series, etc. Cisco Catalyst switches are designed for core layers in campus network, while the Nexus is mainly for data centers. Nexus series switches can support Ethernet, Fibre Channel and FCOE all in the same chassis but the catalyst don’t. The catalyst switches support only Ethernet.

Huawei switches also have various series, such as data center switches, campus switches and SOHO & SMB switches. The popular one is the campus switches. In all the campus switches, the S5700 series is the hottest switch. To have a further understanding, the following part will briefly compare Cisco WS-C3850-24T-L and Huawei S5700-28X-LI-AC switches.

Cisco WS-C3850-24T-L Vs. Huawei S5700-28X-LI-AC

WS-C3850-24T-L is Cisco Catalyst 3850 24 Port LAN Base equipped with stackable 24 10/100/1000 Ethernet ports, and 350W AC power supply.

  • WS=Switch C=catalyst 3850=3850 series
  • 24=Ethernet Port Number
  • T=Ethernet Ports
  • L=LAN Base image

S5700-28X-LI-AC is the Huawei S5700 series 10G switches, which are equipped with 24×10/100/1000Base-T Ethernet ports and 4x10GE SFP+ ports.

  • S=switch
  • 57=5700 Series
  • 00=5700 Sub Series like 5710 series
  • 28=the biggest number of data interfaces is 48, including uplinks and downlinks
  • Li=S5700 series
  • AC=Ac power supply

To sum up, each Cisco Catalyst 3850 model, is similar to a S5700 model, or is equivalent to one of Huawei S5700 models, which will not be listed here.

FS.COM White Box switches and Compatible Transceiver Modules

FS 40G/100G white box switches provide high performance, increased availability, low latency and better serviceability for next-generation data centers and enterprise networks in different applications. And they also support spine-leaf network topology that leverage commoditized hardware for the best price/performance, just as shown below.

100g-switchesBesides the 40G/100G white box data center switches, we also provide a full series of compatible transceiver modules including the SFP, SFP+, QSFP+, SFP28, QSFP28, CFP, etc, which are compliant with major brand. Custom service is also available.

Summary

Cisco Vs Huawei, we can’t say which one is better than the other. To be considered the No.1 choice for your network, Cisco switches meet the needs of organizations and offices of all sizes and sorts. As for Huawei, it has several product lines that are similar to Cisco devices, but have their own network hardware lines and IT solutions for different network demands. Besides Cisco and huawei, there are other brand that are also effective and reliable, such as FS enterprise Ethernet switches. For more detailed information, please direct visit fs.com.

Original source: cisco-vs-huawei

Ubiquiti Unifi Switches Vs Cisco Catalyst 2960, Which One Should I Choose?

Recently, the hot debate between Cisco and Ubiquiti Unifi switches has aroused much attention. Data center managers reckon that Cisco catalyst series switch is undoubtedly the ideal choice than UBNT Unifi switches. While small enterprises have to choose the much cheaper Unifi switches. In the ideal world, they’d love to go with Cisco catalyst 2960, but with a limited budget, they can do nothing about it. So basically, this article will help you look for the best options between Cisco Catalyst 2960 and Unifi switches.

Takes a Big Leap With Cisco Catalyst 2960

Cisco Catalyst 2960 series switches are the layer 2/layer 3 edges, providing 10 and 1 Gigabit Ethernet uplink flexibility, Power over Ethernet Plus(PoE+) access connectivity for enterprise, midmarket and brand office networks. There are Catalyst 2960-S and 2960-X series switches.

Cisco 2960-S is the previous layer 2 access switch with the switching capacity of 176Gbps, 2 20G or 4 1G uplinks and PoE/PoE+ up to 740W.
Cisco 2960-X/2960-XR switches provides the convenience with layer 2 and layer 3 in a single switch with switching capacity of 216Gbps.

WS-C2960S-24PS-L

Figure 1 shows Cisco WS-C2960S-24PS-L  switches and its features.

FS.COM also offers compatible Cisco 2960 SFP modules, which are 100% tested assured. You don’t need to worry about the our Cisco 2960 x SFP compatibility.

The Benefits of Deploying Catalyst 2960 Switches

  • Scale/Performance

Cisco 2960 series supports gigabit access growth for wired and wireless/802.11ac, and more traffic through IP address scalability. And with PoE/PoE+ capacity, Cisco 2960 can be easily and rapidly deployed in many IP endpoints.

  • Efficient Switch Operation

Cisco Catalyst 2960 series switches provide optimum power savings, low power operations for industry best-in-class power management, and power consumption capabilities. The Catalyst 2960 ports are capable of reduced power modes so that ports not in use can move into a lower power utilization state. In all, Cisco Catalyst switches reduce greenhouse gas emissions and increase energy cost savings and sustainable business behavior.

  • Sustainability

Cisco Catalyst 2960 Series Switches include the following features sets: Cisco EnergyWise technology, efficient switch operation, intelligent power management. Cisco Catalyst switching solutions enable greener practices through measurable power efficiency, integrated services, and continuous innovations such as Cisco EnergyWise, an enterprise wide solution that monitors and conserves energy with customized policies.

Get Big Saving on Ubiquiti Unifi Switches

Unifi Switches is fully managed Gigabit switch, delivering robust performance and intelligent switching for your growing networks. The most popular model of this Unifi Switches is US-24, US-48. According to Ubiquiti networks, Unifi switches have the four following features.

US-24-150W Unifi Switches

Figure 2 shows the Uniquiti Unifi US-24-250W port analyst.

    • Multi-Site Management

A single instance of the UniFi Controller running in the cloud can manage multiple UniFi sites within a centralized interface. Each site is logically separated and has its own network monitoring, configuration, maps, statistics, and admin accounts.

      • Optical Fiber Backhaul

Two SFP ports support uplinks of up to 1 Gbps. For high-capacity uplinks, each 48-port model includes two SFP+ ports for uplinks of up to 10 Gbps.

      • Non-Blocking Throughput

For its total, non‐blocking throughput, the 24‐port model supports up to 26 Gbps, while the 48-port model supports up to 70 Gbps.

      • Switching Capacity

The UniFi Switch offers the forwarding capacity to simultaneously process traffic on all ports at line rate without any packet loss.

What Features Does Cisco Switches Have That Are not Addressed by Ubiquiti?

Cisco—Solid brand and construction

      • Solid software packages
      • Very ala Carte on their service and components.
      • Requires Prior knowledge of Cisco Networking. And configuration help from Cisco.
      • Most will feed a good sized area but you have to configure for overlap.
      • the controller is a small rack mount box and should be in your data center.
      • Simple management

Ciisco APICEM

Figure 3 shows the network plug-n-play with Cisco APIC-EM.

What Are the Tempting Points of Unifi Switches, Except Costs?

Ubiquiti—Good Brand and construction

      • Good software and easy to understand
      • No extra fees other than buying equipment
      • If you can program a home router you can set this unit up and the guest network with ease.
      • The controller is software based and easy to install and move should the original crap out or need to be reworked.
      • You can feed a good size office off of 2 of the Long-Range APs. the controller will handle the overlap for you.

How to Make a Choice Between Ubiquiti and Cisco Switches?

Cost: Price is the biggest incentive in most of the case. A general quote for ubiquiti and Cisco, the Cisco is typically 3 times the cost of ubiquiti. Considering the cost differences between Unifi and Cisco catalyst switches, what makes Cisco so pricey. According to many fiber optic technicians, the ubiquiti system will give them 99% uptime while the Cisco system will give them 99.99% uptime.

Performance: Except the budget, another thing to add into the account is going to be bugs in the code/hardware failures. Within the telecommunication industry, you are not going to find much better, as far as stability is concerned, than Cisco.

Support: With Cisco, you will get some of the best support in the industry. Ubiquiti Unifi switches are quite easy to install and manage. Their controllers are software based, which are quite easy to work with.

Together, If your require a more secure, more robust solution to meet your enterprise and complexity needs, then Cisco is your best option. If you are small to medium sized company and are not trying to create a holo projection of the wheel at every desk. Ubiquiti will be a great fit and should more than meet your needs.

Recommended Information
FS.COM 1/10G Enterprise switches supports layer 2 switching capacity featuring Cumulus Linux, Intel Processor, Broadcom Chips, and 176Gbps switching capacity.

FS.COM S2800 LAN access switch

Figure 4 shows the S2800 (24*100/1000Base-T+4*GE Combo) switches.

Conclusion

Although there is exact answer to this question, I Insist that you ask several questions inner your mind before taking the next leap.
Q1: Is what case would you absolutely need Cisco and Ubiquiti wouldn’t do the job?
Q2: What features does Cisco products have that are not addressed by Ubiquiti?
Q3: Is this the best solution for me? Can I use other branded switches like FS.COM?
If you have any comment about this topic, please leave your notes with us.

Mikrotik Vs Ubiquiti – Which One is Better for Home Network?

Ubiquiti Networks and Mikrotik were the rising stars in telecom field for the past year and a half, I have heard various fiber optic technicians telling me that Ubiquiti is better suited wireless applications while Mikrotik is excellent at what it does best—routers. As the cheap and reliable alternative to Cisco expensive equipment, Mikrotik has a learning curve not many can endure and Uniquiti, famous for its 1G/10G Unifi Switches, also has its limits. So, how to make a choice between them? This article will offer detailed information about Ubiquiti and Mikrotik in terms of target markets, price point as well as their pros and cons, from the perspective of a long-time Ubiquiti and Mikrotik user.

Mikrotik Vs Ubiquiti

Target Markets

After looking around at their website, You must admit the Ubiquiti website is a bit better than the Mikrotik site. But, there is no way to say witch one is better? Each of them are making some unique products.

Founded in 1996, MikroTik is a Latvian company aimed to develop routers and wireless ISP systems. Mikrotik offers a complete solution for wireless connectivity needs from the mANTBox, SXT, LHG, DynaDish to hAP AC. And they are also famous for their router devices. Mikrotik even launch the Mikrotik academy by expanding RouterOS learning possibilities for educational institutions.

While Ubiquiti Networks is offering Unifi series devices and its wireless accessories. UBNT has Unifi series, setting up WIFI network could not be easier, range and performance is superior. For detailed information about Unifi switches and its compatible optical transceivers, please see this article.

All in all, in noisy environment, UBNT is more stable and reliable due to its good antenna design, where Mikrotik devices are reconnecting constantly. Mikrotik have CCR routers, they are performing great, there was DDoS attack targeted to my customers network, CCR12G CPU where running at 80%, but did not crashed.

Unifi Switches Or Mirotik Routers

UBNT Unifi Switches and Mirotik Routers are the hot selling products. Both of the two hardware providers are widely deployed in WISP networks, and their switches and routers are software based which are 1/10 or less of the cost of the equivalent Cisco/Juniper products.

  • UBNT Unifi Switches

Ubiquiti offers an amazing price for wired speed switching, especially their Edgeswitch, Unifi switches, and Edgerouter. Their Edgerouter solutions seem to be faster than Mikrotiks solutions. UBNT are no longer providing the Edgeswitch series switches.

US-8 Managed Gigabit Switches

Ubiquiti UniFi Switch is available with either 8, 16, 24 or 48 RJ45 Gigabit ports at either 250 or 750 watts. The UniFi Switch delivers robust performance, PoE+ support, and intelligent switching for growing networks. The UniFi switch targets the Enterprise / SMB market, which is designed for a wider IT audience, and therefore, tend to be simpler, and easier to use. For its total, non-blocking throughput, the 24port model supports up to 26 Gbps, while the 48-port model supports up to 70 Gbps. The above image shows the US-8 8-port managed Gigabit switches with PoE Passthrough.

  • Mirotik Routers

Mikrotik also makes routers and switches and supports advanced features such as MPLS. Ubiquiti routers use Cavium chips so they are not 100% software solutions, having a bit of programmable hardware support. Although most Mikrotik products are 100% software-based, their flagship router nowadays, CCR, also has similar hardware acceleration from Tilera.

CCR1016 is an industrial grade router with a cutting edge 16 core Tilera CPU. The CCR1016-12S-1S+ seen in the below image, comes with redundant power supplies and one RJ45 SFP 10/100/1000M copper module. It has 12 SFP Ports and one SFP+ port for 10G connectivity.

Mikrotik-Cloud-Core-Router

Wireless and BRAS-type solutions under RouterOS work fine, but routing has been a challenge since they moved from Quagga to XORP due to licensing issues; Mikrotik uses a lot of open source but published very little code, drawing extensive criticism from the open-source community. Although it’s unknown to me if they are still using XORP, whatever they use still has flaws.

FS.COM Enterprise Network Solution

FS.COM, as an optical solution expert, provides Ethernet switches, enterprise WiFi, power cords, and video converters, etc. Our Ethernet switches are ranging from 1G to 100G. Just take S3800 series switches as an example, This switch features 24 Gigabit Ethernet ports, 4, 32 or 48 SFP+ ports and 40G/100G ports, which provides smooth upgrading to high-speed network. FS.COM S5850-48S2Q4C switch is equipped with 48 SFP+ ports, 2 QSFP+ ports and 4 QSFP28 ports providing 960Gbps non-blocking bandwidth and 1200Mpps L2/L3 throughput.

S5850-48S2Q4C

Not only the Ethernet switches, we also supplies 100G QSFP28 transceivers, QSFP optical transceivers, SFP+ optics and data center jumpers with great variety and 100% assured tested. Customers can buy a whole series of devices in our online store.

Conclusion

There is no winner between Mikrotik and Ubiquiti Networks, none of them are better or worse, there is different tasks and problems, and different solutions for them. Choose product according your needs, not by brand! Besides FS.COM would be a great option,too. Thank you for your reading, if you are interested in this topic, please leave your comment here.

OM5 WB MMF Vs 50 µm Laser Optimized OM4 Vs Single-Mode Fiber Cables

Network speeds like 40G and 100G Ethernet have already become the mainstream in data centers, and the industry is still working collaboratively on the next-generation development for higher density and faster speed. Multimode fibers, for example, are treated as the cost-effective solutions for short-reach optical interconnects. OM5 fiber, certificated in 2016, is know as the wide band multimode fiber (WBMMF) designed to carry signals over short wavelength (850nm to 950nm). Many enterprise IT and data center managers nowadays are adopting single-mode fiber system or OM4 cabling in the network infrastructure. Will OM5 MMF be a good alternative for 40G/100G network system? This article will provide the detailed information about OM5 fibers, and make a clear comparison between OM5, OM4 MMF and single-mode fiber cables.

OM5 fiber

Is OM5 WB MMF Fiber A Good Solution for Data Centers?

No exact answer can be provided here as OM5 MMF is still a new product in 2017.

OM5 MMF fiber has the same geometry as OM4: 50 µm of core size and 125 µm of cladding, which make it fully compatible and intermateable with OM3 and OM4 cabling. OM5 fiber specifies a wider range of wavelengths between 850 nm and 953 nm. The additional specifications of effective modal bandwidth and attenuation at 953 nm is identical to specification of OM4.

It was created to support Shortwave Wavelength Division Multiplexing (SWDM), which is one of the new technologies being developed for transmitting 40 Gb/s, 100 Gb/s, and beyond. With the use of SWDM technology, it is desirable to reduce parallel fiber count by at least a factor of four to allow continued use of just two fibers (rather than eight) for transmitting 40 Gb/s and 100 Gb/s and reduced fiber counts for higher speeds.

OM5 MMF Vs OM4

The 40/100GbE expected maximum operational distances of OM5 fiber is displayed in the above table. OM5 fiber can support longer distance of 440m for 40G SWDM, and 150m for 100G SWDM system.

How Does OM5 Differ From 50 µm Laser Optimized OM4 Fiber?

Wavelength—OM5 WB MMF is intended for operation using vertical-cavity surface-emitting laser (VCSEL) transceivers across the 846 to 953 nm wavelength range, while OM3 and OM4 50 micron laser optimized multimode fiber, whose bandwidth diminishes rapidly above the 850 nm operating wavelength.

OM5_WideBand_Multimode_Fiber_Bandwidth_Comparison

Effective Modal Bandwidth (EMB)—the best system performance is achieved by a combination of low chromatic dispersion and high EMB. OM5 EMB values are specified as following at both 850 and 953 nm.

• EMB>4700 MHz.km at 850 nm
• EMB>2470 MHz.km at 953 nm

However, the OM3/OM4 EMB values are 2000/4700 MHz·km at 850nm. We can see that the OM5 EMB is lower at 953nm compared to 850nm.

More capacity—OM5 is designed and specified to support at least four WDM channels at a minimum speed of 28Gbps per channel through the 850-953 window. Compared to OM4, it is specified only to work at the 850 nm window.

Even though signals illuminating at wavelengths greater than 850 nm will be transmitted by OM3 and OM4, the absence of specification and test data outside the 850 nm window makes it difficult to predict and model the performance of short wavelength-based WDM systems. In conclusion, OM5 is specifically designed to carry at least four channels between 850 nm and 953 nm, and guarantees that capacity increases four times.

• OM5 carries at least 4X more capacity than OM4 over a meter of fiber.
• OM5 carries 5.7X more capacity than OM3 over a meter of fiber.
• OM4 only carries 1.4X more capacity than OM3 over a meter of fiber.

Why Should I Consider OM5 Over Single-mode Fiber?

Cost-effective solution—even thought the costs of single-mode transceivers have declined considerably over the past few years, the delta relative to multimode remains approximately 50%. OM5 MMF fiber allows for more cost-effective migration to transmission speeds up to 400Gbps utilizing lower-cost optics as opposed to single-mode fiber.

Easy management & installation—in 40G/100G network, multimode connectivity together with MTP/MPO systems makes for a more user-friendly solution for data centers as well as building and campus backbones, especially in cable installation, troubleshooting, cleaning, and overall maintenance.

Seamless Migration to 400Gbps—OM5 multimode fiber delivers higher value to network owners for distances up to 500m (for data rates up to 40Gbps), and allows for smooth migration to 400Gbps for distances up to 150m. For distances beyond 500m, single-mode fiber is recommended.

Conclusion

OM5 MMF fiber has a long way to go even though it is being presented as a potential next-generation option for data centers. So far, I don’t see any tempting reasons to recommend OM5 relative to OM4 cables or single-mode fibers for 40G/100G data centers. But FS.COM will keep you upgraded with the latest development of wide band multimode fibers. For more about our 25G/40G/100G optical solutions, please directly visit our website.

How to Build 10G Network Within Budget

Modern business have become increasingly digital for cloud and data center application, which means everything from sales and marketing to service and support, rely heavily on a fast and reliable network. In 2017, Gigabit Ethernet data rate is no longer adequate to support your business in the ever-developing digital world. Therefore, more and more people nowadays prefers to migrate to 10 Gigabit network. This blog will introduce some basic components of 10G network and how to layout 10GbE within your budget.

How Much Does It Cost?

Three expensive but dispensable elements of 10G network are 10G core switches, access switches with 10G uplinks, and 10G network interface cards for severs and storage devices.

10G network layout

A 10G core switch might cost you $4000 10 years ago, but today, it heavily drops to under $150 per port. Take Cisco 550X and 350X series switches as the example, they offer a full series of 12, 16, 24, 48 10G ports for small and midsize enterprises nearly at $1,500. Obviously, the price can be pretty lower if you search around. For example, Ubiquiti Unifi and Edgeswitch series switches nearly at $200 are suitable for small businesses. FS S3800-48T4S with 48x 100/1000Base-T and 4x 10GE SFP+ is at $480.

For 10G access switches with 10G uplinks, FS S3800-24F4S, S3800-24T4S, S2800-24T4F provides 24 ports with 4 10G uplinks, starting from around $220.

A 10G network interface card (NIC) on severs or storage devices cost usually lower depending on the brand. The hot-selling Mellanox ConnectX series NICs are quite cheap on ebay and Amazon (for under $19).

10G Fiber Optic cabling Elements—10Gbase-T, DAC & SFP+ fiber optics?

When migrating from 1G to 10G, it is simple. Especially with 10GBase-T supported on your 10G switches, you use the same familiar RJ45 network cable to connect the 10G switch with your servers, storage and other switches, and they go up to the same 100 meters as in the Gigabit network. Just make sure you pick up a Cat6a RJ45 network cable instead of the cat5e or cat6a cables. 1m cat6a cables at FS.COM is $3.4. 10GBase-T technology is becoming more popular in network switches and servers because of its lower cost and ease of use. Besides the cat6a/cat7 Ethernet cables, you can also select SFP+ 10GBASE-T modules with 2.5W power consumption and a maximum distance of 30m. SFP+ 10GBASE-T offered at FS.COM is nearly $380.

S3800-24T4S

FS S3800-24F4S (seen in the above image), S3800-24T4S and S2800-24T4F also support 10G SFP+. You are recommended to use SFP+ ports if you have existing devices that come with 10G SFP+ port or you need a 10G connection to other switches that are more than 100 meters away.

For servers or storage devices with 10G SFP+ port, the most cost-efficient way to connect is to use SFP 10G DAC (direct attach cable). These are basically copper cables with SFP+ connector on both sides, and they come in limited length of 1m, 3m and 5m. 0.5m copper SFP+ cables at FS.COM is $9.5.

switchcable-and-ethernet-interface SFP+ DAC cables

For switches that are more than 100 meters away, you will need a pair of SFP+ modules and the matching fiber cable between them. Depending on the length required, you can use multimode SFP+ and fiber to reach 400 meters and single-mode SFP+ and single-mode fiber optic cables to reach 10 km. For the reliable 10G devices like SFP+ transceivers and fiber optic cables, you can visit FS.COM.

How to Ensure a Smooth 10G Upgrading

You don’t need to rush your whole network to 10GbE in one step. Just start from the core switches that you use to connect all your access switches together and connect your servers and storage devices. Think about how many ports you need and if redundancy is a concern for you. Having two core switches stacked together to provide redundancy and also extra performance is a good design for a solid network foundation.

After upgrading your core switches to 10G, it is time to migrate your key access switches and servers to 10G. You will see immediate performance gain in the most critical parts of your network. The rest of the network can stay as they are for the moment, because 10GBase-T ports are backward compatible with Gigabit links, and 10G SFP+ cage can also work with 1G SFP modules. You can upgrade the rest of your network to 10G whenever you’re ready or in multiple phases if you wish.

Conclusion

I bet you must have a good understanding of what’s between the 10 Gigabit high-performance network. The technology is not complicated, especially with FS 10G switches, Cat6a cables, SFP+ transceivers and SFP+ DAC cables. We will help you build a user-friendly and cost-efficient 10G networks. For more information on FS 10G series switches, please contact us directly.