Archives

Was ist der Unterschied: OM3 vs OM4

OM3 und OM4 sind zwei gebräuchliche LWL Multimode, die in lokalen Netzwerken verwendet werden, typischerweise in der Backbone-Verkabelung zwischen Telekommunikationsräumen und im Datenzentrum zwischen Hauptnetzwerk- und SAN-Switches (Storage Area Network). Beide dieser Fasertypen werden als laseroptimierte 50/125-LWL-Multimode, was bedeutet, dass beide einen Kern mit einem Kerndurchmesser von 50μm und einen Mantel mit 125μm Durchmesser haben, eine spezielle Beschichtung, die verhindert, dass Licht aus dem Kern austritt. Beide Fasertypen verwenden die gleichen Anschlüsse, den gleichen Abschluss und die gleichen Transceiver-oberflächenemittierende Laser mit vertikalem Resonator (VCSELs), die Infrarotlicht mit 850 Nanometern (nm) emittieren. LWL OM3 ist vollständig kompatibel mit OM4. Mit so vielen Ähnlichkeiten und oft mit der gleichen Farbe Aqua Kabelmantel und Stecker hergestellt, kann es schwierig sein, diese beiden Arten von Fasern auseinander zu unterscheiden. Also, was ist der Unterschied zwischen beiden ? Beziehen sich diese beiden Arten von Fasern auf dasselbe?

OM3 vs OM4

Was ist der Unterschied: OM3 vs OM4

Tatsächlich besteht der Unterschied zwischen om3 und om4 nur in der Konstruktion des Glasfaserkabels. Der Unterschied in der Konstruktion bedeutet, dass das OM4-Kabel eine bessere Dämpfung aufweist und mit einer höheren Bandbreite als LWL OM3 arbeiten kann. Was ist der Grund dafür? Damit eine Glasfaserverbindung funktioniert, hat das Licht vom VCSEL-Transceiver viel Energie, um den Empfänger am anderen Ende zu erreichen. Es gibt zwei Leistungswerte, die dies verhindern können-optische Dämpfung und modale Dispersion.

Dämpfung ist die Verringerung der Leistung des Lichtsignals, wenn es übertragen wird (dB). Die Dämpfung wird durch Lichtverluste durch die passiven Komponenten wie Kabel, Kabelspleiße und Anschlüsse verursacht. Wie oben erwähnt, sind die Anschlüsse die gleichen, so dass der Unterschied in der OM3- und OM4-Leistung im Verlust (dB) im Kabel liegt. OM4 LWL Multimode Kabel verursachen aufgrund ihrer Konstruktion geringere Verluste. Die maximale Dämpfung, die von den Standards zugelassen wird, ist unten gezeigt. Sie können sehen, dass die Verwendung von OM4 Ihnen geringere Verluste pro Meter Kabel bringt. Die niedrigeren Verluste bedeuten, dass Sie längere Verbindungen haben können oder mehr verbundene Verbinder in der Verbindung haben.

Maximale Dämpfung bei 850 nm erlaubt: OM3<3.5 dB/km; OM4<3.0 dB/km

Licht wird in verschiedenen Moden entlang der Faser übertragen. Aufgrund der Unvollkommenheiten in der Faser kommen diese Moden als etwas unterschiedliche Zeiten an. Wenn dieser Unterschied zunimmt, gelangen Sie schließlich zu einem Punkt, an dem die übertragenen Informationen nicht decodiert werden können. Dieser Unterschied zwischen dem höchsten und dem niedrigsten Modus wird als modale Dispersion bezeichnet. Die modale Dispersion bestimmt die modale Bandbreite, mit der die Faser arbeiten kann, und dies ist die Differenz zwischen OM3 und OM4. Je niedriger die modale Dispersion ist, desto höher ist die modale Bandbreite und desto größer ist die Menge an Information, die übertragen werden kann. Die modale Bandbreite von OM3 und OM4 ist unten gezeigt. Die höhere Bandbreite, die in OM4 zur Verfügung steht, bedeutet eine kleinere Modendispersion und erlaubt somit, dass die Kabelverbindungen länger sind oder höhere Verluste durch mehr verbundene Verbinder erlauben. Dies bietet mehr Optionen beim Betrachten des Netzwerkdesigns.

Minimale Glasfaserbandbreite bei 850 nm: OM3 2000 MHz·km; OM4 4700 MHz·km

Wählen Sie OM3 oder OM4?

Da die Dämpfung von OM4 niedriger als die LWL OM3 ist und die modale Bandbreite von OM4 höher als OM3 ist, ist die Übertragungsdistanz von OM4 länger als OM3. Details sind in der folgenden Tabelle aufgeführt. Wählen Sie entsprechend Ihrer Netzwerkskala einen geeigneteren Kabeltyp.

Übertragungsdistanz OM3 VS OM4

Da OM4 besser als OM3-Kabel ist, ist das OM4-Kabel in der Regel doppelt so teuer wie das OM3-Kabel. Dies kann ein großer begrenzter Faktor für die Anwendung von OM4-Kabeln sein. Wenn Sie sich jedoch entscheiden, in FS.COM einzukaufen, erhalten Sie möglicherweise viel billigere OM4-Fasern, fast die gleichen wie die LWL OM3. Jedes OM3-oder OM4-Kabel kann Ihren individuellen Verkabelungsanforderungen gerecht werden. Wählen Sie einfach den am besten geeigneten für Ihr Netzwerk, um weniger zu kosten und mehr zu erreichen.

Hohe-Dichte-MTP/MPO-Kabelbaugruppen

Gegenwärtig ist die Migration zu einem 40G/100G-Netzwerk die populäre und unwiderstehliche Tendenz für ein Datenzentrum-Verkabelungssystem geworden, was die Suche nach einer größeren Bandbreite und einer höheren Dichte von faseroptischer Konnektivität in Rechenzentren und optischen Netzwerken mit sich bringt. Dann ist es eine große Herausforderung, ein Gleichgewicht zwischen hoher Kapazität und geringem Stromverbrauch herzustellen. Glücklicherweise bietet die MTP/MPO-Verkabelungstechnologie eine konstruktive und zuverlässige Lösung, um eine bessere Netzwerkleistung zu erzielen. In diesem Artikel werden einige wesentliche Komponenten dieser Verkabelungslösung vorgestellt.

MTP/MPO-Trunkkabel

MTP/MPO-Trunkkabel verbinden Module als permanente Verknüpfung. Die Trunkkabel sind mit 12, 24, 48 und 72 Fasern erhältlich. Sie werden in der Regel für die Verbindung von Kassetten, Panels oder robusten MPO-Fanouts eingesetzt und ermöglichen den schnellen Einsatz von High-Density-Backbone-Verkabelungen in Rechenzentren und anderen Umgebungen mit hoher Glasfaser. Darüber hinaus bietet es auch viel Flexibilität und Komfort, sobald Sie den Stecker-Stil in den Patch-Panels ändern müssen. Anstatt den Stecker am Kabelstrang zu wechseln, installieren Sie einfach eine neue Kassette mit der neuen Steckerart auf der Cross-Connect-Seite des Patch-Panels. Die Vorteile des MTP/MPO-Trunkkabel umfassen im Allgemeinen:

MTP MPO trunkkabel

  • Hochwertige MTP/MPO-Trunkkabel werden werkseitig vorkonfektioniert, getestet und zusammen mit den Testberichten verpackt. Diese Berichte dienen der langfristigen Dokumentation und Qualitätskontrolle.
  • Kabellänge verringern-Diese Stammkabel haben sehr kleine Durchmesser,die das Kabelvolumen verringern und die Klimatisierungsbedingungen in Rechenzentren verbessern.
  • Zeitsparen: Mit dem speziellen Plug-and-Play-Design können MTP/MPO-Trunkkabel integriert und sofort eingesteckt werden. Dies trägt erheblich zur Reduzierung der Installationszeit bei.

MTP/MPO-Breakoutkabel

MTP/MPO-Breakoutkabel bieten einen Übergang von Multifaserkabeln zu einzelnen Fasern oder Duplex-Steckverbindern. Das als MTP/MPO-Kabelbaum oder Fan-out-Kabel bekannte MTP/MPO-Breakoutkabel verfügt an einem Ende über einen einzelnen MTP-Stecker, der in 6 oder 12 Stecker ausbricht. Diese Steckertypen können LC, SC, ST, etc. sein Es ist in 4-, 6-, 8- oder 12-Faser-Bandkonfigurationen mit Längen von ca. 10, 20, 30 Metern und anderen kundenspezifischen Längen erhältlich. Breakoutkabel bieten ein zuverlässiges und kosteneffektives Verkabelungssystem für die Migration von Legacy-10G auf 40G/100G-Ethernet mit höherer Geschwindigkeit. Die folgenden sind die Vorteile von MTP/MPO-Breakoutkabel:

MTP-MPO-breakoutkabel

  • Einfaches Deployment-Das vom Hersteller abgeschlossene System spart Installations- und Netzwerkrekonfigurationszeiten.
  • Raumsparen – Die aktive Ausrüstung und das Backbone-Kabel sind gut, um Platz zu sparen.
  • Einfache Entwicklung – Das vom Hersteller abgeschlossene System spart Installations- und Netzwerkrekonfigurationszeiten.
  • Reliability-Hohe Standardkomponenten werden im Herstellungsprozess verwendet, um die Produktqualität zu garantieren.

MTP/MPO-LWL-Adapter-Patchpanel

Um das Problem der Verkabelungsüberlastung, das mit 40G/100G-Netzwerkverbindungen verbunden ist, effizient zu behandeln, hat sich die Verwendung eines hochdichten Faser-Patch-Panels als eine ideale Wahl erwiesen. Das MTP/MPO-LWL-Adapter-Patchpanel wurde entwickelt, um Flexibilität und einfache Netzwerkbereitstellung zu gewährleisten und die Migration von einer 10G- auf eine 40/100G-Infrastruktur zu erleichtern. Es wird in Netzwerkanwendungen mit hoher Dichte für Querverbindungen in Hauptverteilungs-, Horizontalverteilungs- und Geräteverteilungsbereichen verwendet. Diese LWL-Adapter-Patchpanel gewährleistet eine effiziente Platznutzung, schnelle Bereitstellung und höchste Zuverlässigkeit bei niedrigsten installierten Kosten. Dies wiederum sorgt für eine hohe Rendite.

MTP-MPO-lwl-adapter-patchpanel

Fazit

Es besteht kein Zweifel, dass das MTP/MPO-Verkabelungssystem tatsächlich eine ideale Lösung für Netzwerkinfrastrukturen mit hoher Dichte bietet, was die Schwierigkeiten der Migration auf das 40/100G-Netzwerk erleichtert. FS.COM bietet eine breite Palette von MTP/MPO-Lösungen und Tutorials, für weitere Informationen besuchen Sie bitte http://www.fs.com.

What Are OM1, OM2, OM3 and OM4 Fiber Patch Cable?

Fiber optic cable can be divided into several types. Usually we see single-mode and multimode fiber types available on the market. Multimode fibers are described by their core and cladding diameters. The diameter of the multi-mode fiber is either 50/125 µm or 62.5/125 µm. At present, there are four commonly used OM (multimode) fibers: OM1, OM2, OM3 and OM4. Each type of them has different characteristics.

OM1 OM2 OM3 OM4 OM5 fiber cables

The picture above shows the development of OM multimode fibers. The Lime Green OM5 fibers are newly released and sure to be the mainstream transmission media in the near future. For more information about OM5 fibers, please turn to: OM5 Fiber Cable – Is It Worthwhile for 40G/100G SWDM4 Cabling Solution

OM Multimode Fiber Standard

Each “OM” has a minimum Modal Bandwidth (MBW) requirement. OM1, OM2, and OM3 are determined by the ISO 11801 standard, which is based on the modal bandwidth of the multi-mode fiber. In August of 2009, TIA/EIA approved and released 492AAAD, which defines the performance criteria for OM4. While they developed the original “OM” designations, IEC has not yet released an approved equivalent standard that will eventually be documented as fiber type A1a.3 in IEC 60793-2-10.

OM1, OM2, OM3 and OM4 multi-mode fiber

According to the above table,

  • OM1 cable typically comes with an orange jacket and has a core size of 62.5 micrometers (µm). It can support 10 Gigabit Ethernet at lengths up 33 meters. It is most commonly used for 100 Megabit Ethernet applications
  • OM2 also has a suggested jacket color of orange. Its core size is 50µm instead of 62.5µm. It supports 10 Gigabit Ethernet at lengths up to 82 meters but is more commonly used for 1 Gigabit Ethernet applications.
  • OM3 has a suggested jacket color of aqua. Like OM2, its core size is 50µm. OM3 supports 10 Gigabit Ethernet at lengths up to 300 meters. Besides OM3 is able to support 40 Gigabit and 100 Gigabit Ethernet up to 100 meters. 10 Gigabit Ethernet is its most common use.
  • OM4 also has a suggested jacket color of aqua. It is a further improvement to OM3. It also uses a 50µm core but it supports 10 Gigabit Ethernet at lengths up 550 meters and it supports 100 Gigabit Ethernet at lengths up to 150 meters.

OM1 Vs. OM2 Vs. OM3 Vs. OM4 Fiber

There are several differences between four kinds of multi-mode fiber, and we can see them clearly from the table below:

OM1, OM2, OM3 and OM4 multi-mode fiber

  • Diameter: The core diameter of OM1 is 62.5 µm , however, core diameter of the OM2, OM3 and OM4 is 50 µm.
  • Jacket Color: OM1 and OM2 MMF are generally defined by an orange jacket. OM3 and OM4 are usually defined with an aqua jacket.
  • Optical Source: OM1 and OM2 commonly use LED light source. However, OM3 and OM4 usually use 850 nm VCSELs.
  • Bandwidth: At 850 nm the minimal modal bandwidth of OM1 is 200MHz*km, of OM2 is 500MHz*km, of OM3 is 2000MHz*km, of OM4 is 4700MHz*km.

Why Are OM3 & OM4 Fiber Superior to OM1 & OM2?

10G OM3Both OM1 and OM2 work with LED based equipment that can send hundreds of modes of light down the cable, while OM3 and OM4 fiber are optimized for laser (eg. VCSEL) based equipment that uses fewer modes of light. LEDs can not be turned on/off fast enough to support higher bandwidth applications, while VCSELs are capable of modulation over 10 Gbit/s and are used in many high speed networks. For this reason, OM3 and OM4 are the multimode fibers included in the 40G and 100G Ethernet standard. Now OM1 and OM2 are usually used for 1G which are not suitable for today’s higher-speed networks. OM3 and OM4 are used for 10G mostly at present. But in the future, since OM3 and OM4 can support the 40G and 100G, which may make them the tendency.

Original Source: www.fiber-optic-solutions.com/what-are-om1-om2-om3-and-om4.html

OM5 Fiber Cable – Is It Worthwhile for 40G/100G SWDM4 Cabling Solution

OM5 multimode fiber, as the advanced version of the old OM4 fiber, is thought to be the future of multimode cabling. It is the Wideband multimode fiber (WBMMF) that can support wavelengths between 850nm and 953nm. It is also designed to support the short wavelength division multiplexing (SWDM)—one of the new technology for 40G/100G connection. However, will it be the ideal transmission medium for 40GbE/100GbE cabling solution?

How OM5 Fiber Developed

Over the past thirty years, multimode fiber has been evolved from OM1 to OM5 multimode fiber. OM1 and OM2 fiber, released at the end of 20th century, are the legacy 125µm multimode fiber that are working fine in 10Mb/s, 100Mb/s and 1000Mb/s cabling solution. However, with the high speed data rate like 10Gb/s, 40Gb/s, 100Gb/s and beyond coming into our life, multimode cabling (OM1 and OM2 ) with LEDs can not meet the requirement. The laser-optimized OM3 and OM4 has been developed subsequently. OM4 fiber cable, with the internal construction, possess higher modal bandwidth than OM3 fiber, which is commonly used fiber medium for 40G/100G connection.

OM1-OM5 fiber

But there is a problem. In a 40G layout, fiber optic technicians have to use one MTP fiber and 4 OM4 duplex fibers (total 8 fibers), which is obvious not preferable for high-density cabling networks. So here comes the OM5 fiber. By utilizing SWDM technology, it can greatly reduce fiber count into 2 fibers (4×10G) in 40G networks, 2 fibers (4×25G) in 100G links. OM5 is the lime green multimode fiber, displayed as follows.

OM5 Fiber

OM5 Fiber for 40G/100G SWDM4 Cabling Solution

Reduce fiber count for 40G/100G connection—OM5 fiber as the advanced version of OM3/OM4 fiber, is backward compatible with OM3 and OM4 fiber cabling. And with the SWDM technology, this fiber can only use two OM5 fibers and 40/100G SWDM4 transceivers in 40G and 100G SWDM4 cabling.

Longer-transmission distance—OM5 is designed and specified to support at least four WDM channels at a minimum speed of 28Gbps per channel through the 850-953 window. Compared to OM4 fiber cable, it is specified only to work at the 850 nm window. OM5 multimode fiber delivers higher value to network owners for distances up to 440m (for data rates up to 40Gbps), and allows for smooth migration to 400Gbps for distances up to 150m. While OM4 fiber cover the distance of 350m, 100m over 40G/100G respectively.

Easy management & installation—in 40G/100G network, multimode connectivity together with MTP/MPO systems makes for a more user-friendly solution for data centers as well as building and campus backbones, especially in cable installation, troubleshooting, cleaning, and overall maintenance.

FS OM5 Cable Solution

FS offer Lime green OM5 fibers. All our OM5 fiber cables are guaranteed by End Face Geometry Test, Continuity Test, and 3D interferometry Test to be high quality. Available in LC, SC, FC, ST, etc. Connectors, and the cable length of OM5 fiber can be provided from less than 1 meter to more than 100 meters, which will well meet the needs for 400m transmission of 40G SWDM4 QSFP+ module and 100m transmission of 100G SWDM4 QSFP28 module, as well as the links on the same rack or row.

fiber optic cable

Not only the OM1/OM2/OM3/OM4/OM5 multimode fibers are provided at FS.COM, but fiber optic cables like singlemode fibers (OS1/OS2) , Twinax copper cables are also offered. For more information about the cost-effective fiber patch cables, Please feel free to contact us via http://www.fs.com.

Original Source: om5-fiber-cable-is-it-worthwhile-for-40g100g-swdm4-cabling-solution

OM5 WB MMF Vs 50 µm Laser Optimized OM4 Vs Single-Mode Fiber Cables

Network speeds like 40G and 100G Ethernet have already become the mainstream in data centers, and the industry is still working collaboratively on the next-generation development for higher density and faster speed. Multimode fibers, for example, are treated as the cost-effective solutions for short-reach optical interconnects. OM5 fiber, certificated in 2016, is know as the wide band multimode fiber (WBMMF) designed to carry signals over short wavelength (850nm to 950nm). Many enterprise IT and data center managers nowadays are adopting single-mode fiber system or OM4 cabling in the network infrastructure. Will OM5 MMF be a good alternative for 40G/100G network system? This article will provide the detailed information about OM5 fibers, and make a clear comparison between OM5, OM4 MMF and single-mode fiber cables.

OM5 fiber

Is OM5 WB MMF Fiber A Good Solution for Data Centers?

No exact answer can be provided here as OM5 MMF is still a new product in 2017.

OM5 MMF fiber has the same geometry as OM4: 50 µm of core size and 125 µm of cladding, which make it fully compatible and intermateable with OM3 and OM4 cabling. OM5 fiber specifies a wider range of wavelengths between 850 nm and 953 nm. The additional specifications of effective modal bandwidth and attenuation at 953 nm is identical to specification of OM4.

It was created to support Shortwave Wavelength Division Multiplexing (SWDM), which is one of the new technologies being developed for transmitting 40 Gb/s, 100 Gb/s, and beyond. With the use of SWDM technology, it is desirable to reduce parallel fiber count by at least a factor of four to allow continued use of just two fibers (rather than eight) for transmitting 40 Gb/s and 100 Gb/s and reduced fiber counts for higher speeds.

OM5 MMF Vs OM4

The 40/100GbE expected maximum operational distances of OM5 fiber is displayed in the above table. OM5 fiber can support longer distance of 440m for 40G SWDM, and 150m for 100G SWDM system.

How Does OM5 Differ From 50 µm Laser Optimized OM4 Fiber?

Wavelength—OM5 WB MMF is intended for operation using vertical-cavity surface-emitting laser (VCSEL) transceivers across the 846 to 953 nm wavelength range, while OM3 and OM4 50 micron laser optimized multimode fiber, whose bandwidth diminishes rapidly above the 850 nm operating wavelength.

OM5_WideBand_Multimode_Fiber_Bandwidth_Comparison

Effective Modal Bandwidth (EMB)—the best system performance is achieved by a combination of low chromatic dispersion and high EMB. OM5 EMB values are specified as following at both 850 and 953 nm.

• EMB>4700 MHz.km at 850 nm
• EMB>2470 MHz.km at 953 nm

However, the OM3/OM4 EMB values are 2000/4700 MHz·km at 850nm. We can see that the OM5 EMB is lower at 953nm compared to 850nm.

More capacity—OM5 is designed and specified to support at least four WDM channels at a minimum speed of 28Gbps per channel through the 850-953 window. Compared to OM4, it is specified only to work at the 850 nm window.

Even though signals illuminating at wavelengths greater than 850 nm will be transmitted by OM3 and OM4, the absence of specification and test data outside the 850 nm window makes it difficult to predict and model the performance of short wavelength-based WDM systems. In conclusion, OM5 is specifically designed to carry at least four channels between 850 nm and 953 nm, and guarantees that capacity increases four times.

• OM5 carries at least 4X more capacity than OM4 over a meter of fiber.
• OM5 carries 5.7X more capacity than OM3 over a meter of fiber.
• OM4 only carries 1.4X more capacity than OM3 over a meter of fiber.

Why Should I Consider OM5 Over Single-mode Fiber?

Cost-effective solution—even thought the costs of single-mode transceivers have declined considerably over the past few years, the delta relative to multimode remains approximately 50%. OM5 MMF fiber allows for more cost-effective migration to transmission speeds up to 400Gbps utilizing lower-cost optics as opposed to single-mode fiber.

Easy management & installation—in 40G/100G network, multimode connectivity together with MTP/MPO systems makes for a more user-friendly solution for data centers as well as building and campus backbones, especially in cable installation, troubleshooting, cleaning, and overall maintenance.

Seamless Migration to 400Gbps—OM5 multimode fiber delivers higher value to network owners for distances up to 500m (for data rates up to 40Gbps), and allows for smooth migration to 400Gbps for distances up to 150m. For distances beyond 500m, single-mode fiber is recommended.

Conclusion

OM5 MMF fiber has a long way to go even though it is being presented as a potential next-generation option for data centers. So far, I don’t see any tempting reasons to recommend OM5 relative to OM4 cables or single-mode fibers for 40G/100G data centers. But FS.COM will keep you upgraded with the latest development of wide band multimode fibers. For more about our 25G/40G/100G optical solutions, please directly visit our website.

The Truth About OS1 and OS2 Optical Fiber

Several years ago, OS1 fiber optic cable was the only one standard for single-mode fiber with the maximum link length for campus cabling around 10km, but 10km can no longer satisfy people’s increasing needs nowadays. Therefore, OS2 fiber that can support much longer distance than 10km has been widely utilized in telecommunication industry. But there has been some debate and confusion as to the differences between OS1 and OS2 fiber types and what the terminology actually means. Thus, the following article is provided to assist the users in understanding the differences between OS1 and OS2 fiber types. The following image shows the LC to LC fiber patch cable single mode plugging in a switch.

single-mode-fiber

OS1 and OS2 Single-mode Fibers

Firstly, OS in the term OS1 and OS2 specifications refers to the Optical Single-mode fiber. Single-mode OS1 is indoor tight buffered fiber. An OS1 cable could be a micro-core LSZH indoor cable that consists of 250 micron fibers, with the fibers being tightly enclosed in a cable with aramid strengthening yarn and a LSZH jacket. The attenuation of a OS1 fiber is higher than an OS2 fiber. From the above table, the maximum attenuation allowed per km of installed cable is 1.0 dB for OS1 for 1310nm and 1550nm, while the maximum attenuation allowed per km of installed cable is 0.4 dB for OS2 for 1310nm and 1550nm.

os1-and-os2-maximum-attenuation

Single-mode OS2 is an outdoor loose tube optical fiber cable, which is suitable for outdoor applications where the cabling process applies no stress to the optical fibers. For instance, a 250 micron coated multi-fiber, which is loose inside an enclosure or tube and/or is free to move, is classified as OS2.

OS1 or OS2 performance cables are constructed from B1.3 optical fibers (or ITU specification G.652D). Furthermore, OS1 and OS2 cable types can also include cables manufactured from B6_A fiber, which is commonly known as bend insensitive single-mode optical fiber, or ITU specification G657A2 (compatible with B1.3 optical fiber). OS1 or OS2 single mode fiber performance, does not relate to ITU specification G.655 (Non-dispersion shifted single mode optical fibers.

Why Should We Use OS2 Over OS1 Fiber?

Single-mode fiber was mainly used for long-hual applications but not marked as a cost-effective investment for future application in building. One reason is that the single-mode related products like cables and optical transceivers are offered with high price. The other is that with the price decrease of the VCSEL or laser power source, the performance gap (namely link length) between multimode or single-mode fiber is smaller everyday.

Considering this, why not use the best single-mode fiber (OS2) to create better performance and ready for high speed data networks? Besides the difference in link distance, OS1 and OS2 fibers have different attenuation—OS2 has two times less losses than OS1 fibers.  And in CWDM or DWDM network, OS1 has poor result in the wavelength range called E-band or water peak band, which makes it not suitable for the WDM-based network.

cwdm-allocation-and-fiber-loss

Figure 3: CWDM wavelength allocation and fiber loss. The solid line represents OS2 fibers. The dotted line represents the water peak.

Another good news is that if you use OS2 fiber, it will be more suitable for you to support the IEEE 802.3 multiplexed series (40G BASE-LR4 and 100G BASE-ER4). You even don’t need to change your existing OS1 fibers, as the OS2 can be mixed with OS1 in the same link. What’s more, active or passive component for OS1 like connectors, adapters also works with OS2.

Conclusion

To sum up, OS1 optical fiber is appropriate for indoor and universal tight buffered cable constructions, which are mainly deployed in internal building/campus networks, as well as internal cabling within telecommunication exchanges and data centers. While OS2 optical fiber is appropriate for outdoor and universal loose tube solutions, which would include external plant and most back-haul networks. Therefore, when deciding which single-mode optical fiber type to specify, consider the application as well as how and where the cable will be installed. For further information on optical fiber products, please contact FS.COM. Our fiber optic cable price is the cheapest with great feedback.

Guide to Several Materials in Fiber Optic Cable Construction

Fiber optic cable is considered as one of the most effective transmission medium today for safe, and long-reach communications, and it also offers a number of advantages over copper. In general, fiber optic cable consists of a core, cladding, coating, strengthening fibers, and a cable jacket, which has been clearly introduced in the previous article. Today’s article will focus on the several materials in fiber optic cable construction, as well as their features and applications.

PVC (Polyvinyl Chloride)

Polyvinyl Chloride (PVC) is one of the most commonly used thermoplastic polymers in the world. The PVC cable is typically used for patch connections in the data center, wiring closet, and at the desktop. PVC is produced in two general forms, first as a rigid or unplasticized polymer (RPVC or uPVC). The following image shows a ST single-mode pre-Terminated cable (0.9mm PVC Jacket).

2m-upc-singlemode-48-fiber-multi-fiber-pre-terminated-cable-0-9mm-pvc-jacket

Features:

  • Good resistance to environmental effects. Some formulations are rated for -55 to +55.
  • Good flame retardant properties. Can be used for both outdoor and indoor fiber optic cables.
  • PVC is less flexible than PE (Polyethylene).

PE (Polyethylene)

Polyethylene is a kind of polymer that commonly categorized into one of several major compounds of which the most common include LDPE, LLDPE, HDPE, and Ultrahigh Molecular Weight Polypropylene. Polyethylene fiber has a round cross section and has a smooth surface. Fibers made from low molecular weight polyethylene have a grease like handle.

Features:

  • Popular cable jacket material for outdoor fiber cables
  • Very good moisture and weather resistance properties
  • Very good insulator
  • Can be very stiff in colder temperatures
  • If treated with proper chemicals, PE can be flame retardant.

Kevlar (Aramid Yarn)

The word Aramid is a generic term for a manufactured fiber in which the fiber forming substance is a long chain synthetic polyamide in which at least 85% of the amide linkages are attached directly to the two aromatic rings as defined by the U.S. federal trade commission. Kevlar fiber is based on poly (P-phenylene terephthalamide). Aramid yarn is the yellow fiber type material found inside cable jacket surrounding the fibers. It can also be used as central strength members.

Features:

  • Aramid yarn is very strong and is used in bundle to protect the fibers.
  • Kevlar is a brand of aramid yarn. Kevlar is often used as the central strength member on fiber cables which must withstand high pulling tension during installation.
  • When Kevlar is placed surrounding the entire cable interior, it provides additional protection for the fibers from the environment.

Steel Armor

The steel armored fiber cable, using light-steel tube, can provide maximum bend radius, strong protection and flexible cabling. Steel armor jacket is often used on direct burial outdoor cables and it provides excellent crush resistance and is truly rodent-proof. Since steel is a conductor, steel armored cables have to be properly grounded and loss fiber optic cable’s dielectric advantage. Armored fiber optic cable are often used in the outdoor direct burial cables and for the industrial environment where cables are installed without conduits or cable tray protection. The following image shows a single-mode armored fiber optic cable.

1m-lc-upc-to-lc-upc-duplex-3-0mm-pvcofnr-smf-armored-fiber-patch-cable

Various types of these light-steel armored fiber cables are in stock in FS.COM, including pre-terminated armored fiber patch cables, armored fiber trunk cables and field-terminated armored fiber cables for both indoor and outdoor applications.

Features:

  • Provides excellent crush resistance for outdoor direct burial cables
  • Protects cables from rodent biting
  • Decreases water ingress into the fiber which prolongs the fiber cable’s life expectancy

Central Strength Member

Strength member is used to increase the tensile force that will be applied on the cable during installation. Strength member will take the pulling force and will keep the fibers safe during installation. For large fiber count cables, a central strength member is often used.

The central strength member provides strength and support to the cable. During fiber optic cable installation, pulling eyes should always be attached to the central strength member and never to the fibers. On fiber splice enclosure and patch panel installations, the cable central strength member should be attached to the strength member anchor on the enclosure or patch panel.

Conclusion

When you choose to use which type of the fiber optic cables, the fiber optic cable construction, along with the mechanical and environment requirements should all be taken into account. All the above materials in the fiber optic cable construction are specifically required to meet the network infrastructure. FS.COM fiber optic cables come in various types with detailed specifications displayed for your convenient. These quality cables are designed with best-in-class performance. For more information about fiber optic cables or patch cords, you can visit fs.com.