Archives

400G CFP8 PAM4 & 400GBASE-SR16 NRZ Transceiver Modules

With the price of 100G QSFP28 optics and CFP form factors (CFP module/CFP2/CFP4) dropping down in 2017, 100G technology is becoming more and more popular among data center managers and IT pros in order to cope with the ever-lasting bandwidth needs. However, 100G is not the finish line. CFP multimode source agreement (MSA) demonstrated CFP8 (16X 25 Gb/s) form factor for 400 Gigabit Ethernet at OFC 2017. Although CFP8 module is still in development, it is assured to be popular in the near future. Therefore, this article will have a clearer introduction to 400G CFP8 PAM4 and NRZ modules, and compare with the former CFP modules and 400G CDFP.

100G CFP to 400G CFP8

Introduction to 400GbE CFP8 Modules

CFP8 module is the latest developing CFP from factor version, which supports eight times and four times the bandwidth density of CFP and CFP2 form factors, respectively. The CFP8 interface supports up to 16 different lanes in each direction with nominal signaling rates of 25Gb/s or 26Gb/s per lane, and either NRZ or PAM4 signaling. As the above image shows, CFP8 is approximately the size of a CFP2 optics. This interface has been generally specified to allow for 16 x 25 Gb/s and 8 x 50 Gb/s mode.

CFP8 functional diagram

Example IEEE specifications supported by CFP8:

  • 400GBASE-SR16 parallel MMF (16x25G NRZ)
  • 400GBASE-FR8/LR8 duplex SMF (8x50G PAM4 WDM)
  • 400GBASE-DR4 parallel SMF (4x100G PAM4)
  • CDAUI-16, CDAUI-8

400G CFP8 FR8 and LR8 Transceivers with PAM4 Technology

CFP8 PAM4 optics, compliant with IEEE 802.3bs 400GBASE-FR8 & LR8 electrical interface specifications, offers higher receiver bandwidth capacity for reach up to 2km and 10km. The 400GBASE-FR8 & LR8 consumes less than half the power per GB compared to a 100G CFP4 msa solution. CFP8 optics uses LC duplex fiber cables.

PAM4 and NRZ

The PAM4 stands for pulse amplitude modulation with four levels. Instead of driving the laser to generate one of the two output amplitudes, like NRZ, PAM4 technology generates four different amplitude levels, meaning a network based on PAM-4 can send twice as much data as an NRZ version.

CFP8 400GBASE-SR16 with NRZ Technology

CFP8 400GBASE-SR16 modules focus on non-return to zero (NRZ) signal modulation Scheme. To use an analogy, it means you’re sending signals in the most simple format: “light on” and “light off.” A ‘1” is transmitted as pulse of light whereas ‘0” is no light output. Based on the currently available fast VCSEL light sources only achieving data rates of 25G, sixteen channels must transmit in parallel to create a 400G data stream.

Due to the design simplicity NRZ, the modulation format of choice for all data rates up to 25Gb/s. 400GBASE-SR16 CFP8 transceivers requires 16 fiber pairs to support a total of 400Gb/s with MPO multimode cables.

What’s New With CFP8 Module?

A CFP8 module is a hot pluggable module. Compared with the former modules, the control and status reporting functions between a host and a CFP8 module use non-data control and status reporting pins on the 124-pin connector. There are three Hardware Control pins, two Hardware Alarm pins, and four pins dedicated to the MDIO interface.

Compared to CFP2/CFP4 MSA Optics

CFP8 is the proposed CFP8 from factor by MSA member companies. It maintains the large size of CFP form factor (nearly the size of CFP2, larger than CFP4 MSA modules), but supports 4x100G i.e. 4x the CFP2. Besides this, CFP8 uses less power than the former CFP form factor modules. There are 400GBASE-SR16 for parallel MMF 16x25G NRZ, and 400GBase-FR8/LR8 duplex SMF 8x50G PAM4 WDM.

CFP8 Vs. CDFP

CFP8 is not the first released 16x25G= 400G modules, but CDFP. 400G CDFP module (CD=400 in Latin), is the four generation CFP form factor. Providing a high level of integration, performance and long-term reliability, the CDFP 400 Gbps interface is available in short- and long-body versions. The specifications are compatible for use with direct attach cables, active optical cables, and connectorized optical modules. The CDFP module will support:

  • 5 meter direct attach cables
  • 100 meter multimode fiber
  • 500 meter parallel single‐mode fiber
  • 2 kilometers of duplex single‐mode fiber

The compact modules are well suited for low power applications using copper, VCSEL or silicon photonics based technology. They also targeted InfiniBand EDR hydra cables and 128GFC applications but so far little market segment pick up. Though relatively new with 2014 and 2015 rev releases, CDFP may be short lived due to the smaller more efficient developing set of CFP8 solutions.

Latest Trend With 400 Gb/s in the Industry

While 400 GbE standard is still a few years away, the need for 400 Gb/s interfaces is here today. The CDFP form factor is already being used in proprietary interfaces to interconnect high performance servers and will soon be used to interconnect switch and router chassis. 400G CFP8 FR8/LR8 PAM4 and 400GBASE-SR16 modules had been displayed at OFC 2017. Finisar, Fujitsu, and oclaro, etc MSA member enterprises will introduce low profile 400G modules in a short period.

These proprietary chassis interconnects have always been massively parallel and will continue because they provide the massive bandwidth needed to interconnect equipment so that multiple chassis perform as one big chassis. While 16 lanes is a fairly wide interface, multiple applications need the maximum amount of bandwidth that can only be provided by many parallel lanes running at the fastest speed available. It seem that CFP8 with the same 16 MPO connectors has much potential than CDFP modules. FS.COM offers a large stock MSA-compliant optical transceivers, including 100G CFP/CFP2/CFP4 MSA, CXP, and QSFP28 transceiver modules. We will keep in path with the informative world, and provide the best services & telecom products to all of our customers.

Original Source: 400G CFP8 PAM4 & 400GBASE-SR16 NRZ Transceiver Modules

Will CPAK 100G Transceiver Module Thrive in 2017?

Currently, prices on 100G optical transceivers have been dropping faster than those devices at 40G, which drives customers to migrate to 100G directly instead of turning to the intermediate 40G Ethernet. For example, QSFP-40G-SR-BD ($300) costs higher than QSFP-100G-SR4-S ($269) at FS.COM. It is the same case as other vendors. QSFP28 and CFP optical transceivers as the main transmission media of 100G network, dominate 100G hardware market.

100G transceiver modules

CPAK, released right after CFP2 100G modules, is the Cisco proprietary form factor, which greatly effect the popularity of this module type. However, in 2017, many third party optical solution vendors like FS.COM announce to help market to cut down this pricing and save budgets for services providers and operators. So will it thrive in 2017? Today’s article will describe CPAK 100G module in detail attached with the positive analytics of the future of this module type.

Unveiling CPAK Optical Transceiver Module

CPAK 100GBASE optical module, designed as a smaller, low-cost alternative to CFP transceiver, can be plugged into the CPAK ports of Cisco switches and routers. Besides, CPAK module is the first 100G optical transceivers that use CMOS Photonics technology. This type of 100GBASE modules can work in the following Cisco networking equipment—ASR 9000 Series Router; CRS-X Carrier Routing System; NCS 2000, 4000, and 6000 Series Routers; the Nexus 7000 and 7700 Series Switches, and the Cisco ONS Transport Platform.

CPAK optical transceiver incorporates IEEE standard interfaces available in several different types: 100GBASE-SR10, 100GBASE-ER4L, 100GBASE-LR4, 10x10G-ERL, 10x10GBASE-LR, etc. CPAK transceivers can support 10X10Gbps and 4X25Gbps mode for an aggregate of 100Gbps data rate. It can also operate high-density 10G breakout with MPO-24 cables. CPAK-100G-SR10 is backward compatible with 10GBASE-SR. While CPAK 10X10G-LR is compatible with 10GBASE-LR optics. CPAK LR4 module is compatible with other 100GBASE-LR4 compliant modules such as CFP to support high-bandwidth 100Gb optical links over standard single-mode fiber terminated with SC connectors. Table 1 shows the existing Cisco 100G CPAK Modules.

Cisco CPAK modules

CPAK Out-Competes CFP/CFP2 for Smaller Footprint & Energy Economy

Once the CPAK transceiver module had been released, it was marked as the smallest 100G footprint providing higher-port density and low power consumption for 100G networks. When comparing with CFP modules, CPAK transceivers are less than one third the size of CFP modules, and dissipate less than one third the power. In a comparison with CFP2 modules, CPAK optical transceivers are 20% smaller and consume 40% less power. In other word, if you use CPAK other than CFP2 modules in your data center switches, it can offer 20% greater port density and front-panel bandwidth.

100G-module-evolution

To sum up, CPAK optical module has smaller footprint than CXP, CFP and CFP2, but bigger than CFP4 and QSFP28 optics. Besides, CPAK 100GBASE-LR4 consumes less than 5.5W, which is less than CFP LR4 (24W), CFP2 LR4 (12W), CFP4 (9W) and CXP LR4 optics (6W) but a little higher than QSFP28 (3.5W). CPAK represents a significant advancement in optical networking, providing dramatic space and power efficiency.

CPAK Vs. QSFP28

QSFP28 optical transceiver is regarded as the most promising 100G optical module due to its smallest form factor and lowest power consumption. For example, Cisco CPAK 100GBASE-LR4 module supports link lengths of up to 10 km over standard single-mode fiber with SC connector with a nominal power consumption of less than 5.5W. QSFP28 100GBASE-LR4 supports up to 10km and consumes nearly 3.5W. CPAK optics obviously don’t have a shot when competing with QSFP28 optical transceivers.

What About the Future of CPAK Modules?

In 2017, 100G technology and relevant optical transceivers gradually become mature. 100G optics like CXP, CFP/CFP2/CFP4, 100G QSFP28 in different standards offers a huge selection for customers. Of which QSFP28 100G modules, thanks to the smallest form factor and reliable performance, maintain large market share in 100G hardware market. In addition, some newly released 100G switches only have QSFP28 ports which in turn promotes the popularity of 100G QSFP28 transceivers.

In such a fierce market environment, it is hard to say whether CPAK will be a hot star in 100G hardware market or not. Anyhow—CPAK module is the first optical transceivers that use CMOS electronic technology. Furthermore, Cisco and several other vendors offer CFP2 to CPAK adapter to support the conversion between CPAK and CFP2 modules. Third party vendors like ourselves are also beginning to supply 100G CPAK modules in 2017. We will see if such industry development will take place!

Summary

CPAK module was launched just days after the certification of CFP2 optics. It is popular for the smaller footprint and energy economy. However, when competing with open source MSA compatible 100G products (CFP/CFP2/CFP4 and QSFP28), CPAK is not the ideal one for 100G high-density connectivity. The world undergoes a myriad changes in the twinkling of an eye. For the newly information about our new-coming CPAK modules, please visit fs.com or pay attention to the updated article in this blog.

Original Source: Will CPAK 100G Transceiver Module Thrive in 2017?

Several 100G DWDM Solutions for Arista 7500E Series

To keep up with the global demand for higher bandwidth, Arista has designated 7500E series switch to address 100G long-hual dense wavelength division multiplexing (DWDM) connectivity. Arista 100G interconnect solution combines Layer 2/Layer 3 switching, wire-speed encryption and coherent DWDM into a high-density line card for the Arista 7500E data centers. Along with the introduction of Arista 7500E series switches, this article will illustrate several 100G DWDM solutions for distance up to 80 km, 150 km and 3000 km as well.

Arista 7500E Series Switch & Line Card

Arista 7500E series is the second generation of 7500 series switch that delivers scalable and deterministic network performance for mission critical data centers, enterprise and HPC environments. Available in a compact 7RU (4-slot) or 11RU (8-slot), Arista 7500E offers over 30Tbps of total capacity for 1,152 ports of 10GbE, 288 ports of 40GbE and support for 96-port 100GbE with a broad choice of interface types that support flexible combinations of 10G, 40G and 100G modes on a single port.

The 7504 and 7508 are the two types of Arista 7500E series switches. The 7508 systems support 8 linecards, dual supervisor modules and 6 fabric modules to provide a full 30Tbps of capacity. The smaller 7504 systems share a common architecture with the 7508 with the primary difference being support for 4 linecards and 15Tbps of forwarding capacity. The most unique feature of this switch is that it can connect with 10G SFP+, 40G QSFP+, 100G QSFP28 and CFP2 modules.

arista-7500E-switch

Arista 7500E series line card for addressing 1/10G, 40G and 100G with full support for industry standard connections and comprehensive layer 2 and 3 features for flexible deployment choice. The line card delivers error-free performance up to 3000 km of fiber and consumes less than 140W per 100Gbps. Similar to any other Arista platform, the DWDM line card utilizes the single binary image of Arista’s extensible operating system (EOS). Line cards with CFP2 and QSFP support standard 100G for both single and multimode fiber for distance up to 40 km.

Why Need 100G DWDM Solution?

100G optical transceivers provide the most straightforward method to connect 100G traffic over long-hual applications. 100G optics like CFP and QSFP28 offer cost-optimized solutions for connecting 100G switches together in a rack or data center. Nevertheless, the small and cost-effective QSFP28 100G optics now can only handle connections over distances of less than 10 km. For example, QSFP28 LR4 is compliant with 100GBASE-LR4 standard that operates over duplex LC cables for a link length of 10 km.

As to the CFP form factors, coherent CFP modules is designed to support metro and long-hual DWDM applications. CFP 100GbASE-ER4 can support up to 40 km. However, owing to its large size and high power consumption, CFP transceivers are less popular on the market. If you want to use CFP optics for 100G deployment, keep in mind, CFP modules are too large to fit in the Ethernet switches and will significantly reduce port counts and increase power usage, making 100G switches poor performance in cost-effectiveness. Therefore, customers who want to upgrade 100G network can only cover a distance of 10 km, which is obviously insufficient for geographically separated data centers or metro infrastructures. Figure 2 shows the basics of DWDM system.

DWDM-System

To realize 100G long-distance transmission, Arista 100G DWDM solution combines DWDM optics with a fully passive Mux/Demux system that can handle up to 3,000 km. Arista 100G DWDM solution is a 6 x 100G Coherent DWDM line card for the 7500E series with integrated wire-speed encryption and analog coherent CFP2 optical interfaces. Several use cases for the Arista 7500E Series DWDM card in multi-site data center networks exist. The following sections identify three use cases for Arista 7500E DWDM solutions.

Use Cases for Arista 7500E DWDM Solution
  • Use Case 1—Less Than 80KM Dark Fiber Connection

For a typical metro link that is less than 80 km, Arista 7500E Series DWDM line cards can directly terminate a dark fiber connection providing a point-to-point connection between two locations.

DWDM solution for 80 km

Just as figure 3 shows, Arista DWDM solution is ideal for metro applications transmitting up to 9.6Tbps traffic without the need for any additional amplification.

  • Use Case 2—Greater Than 80 km But Less Than 150 km

When extending the distance beyond 80 km, there is a need to amplify the signal to offset heavy signal loss that occurred in the light signal when passing through fiber cables, patch panels and other optical devices. Under this circumstance, EDFA’s or Erbium Doped Fiber Attenuators are employed to give the aggregated wave a boost.

100G DWDM solution about 100 km

By using EDFAs (seen in Figure 4) to the transmit side of each end of the dark fiber link, the signal can be boosted to achieve distances of up to 150 km. Exact distances will be dependent on the number of patches, fiber splices and quality of the fiber.

  • Use Case 3—Greater Than 150 km But Less Than 3,000 km

Arista 7500E DWDM solutions can also cover the distance of greater than 150 km but less than 3000 km. Employing further EDFAs at a spacing of approximately 80 km along the fiber route allows the length of a connection to be extended to over 3,000 km. As shown below, EDFAs are used on both paths to boost the signal.

DWDM solution for 3000 km

Supported Optics for Arista 7500E Series

All Arista 10G SFP+ transceivers, with the exception of LRM, are supported on the Arista 7500E SFP+ ports.

Interface Type SFP+ ports
10GBASE-CR 0.5m-5m
10GBASE-AOC 3m-30m
10GBASE-SRL 100m (OM3) / 150m (OM4)
SFP-10G-SR 300m (OM3) /400m (OM4)
SFP-10G-LRL 1km
SFP-10G-LR 10km
SFP-10G-ER 40km
10GBASE-DWDM 80km
SFP-10G-ZR100 100km
100Mb TX, 1GbE SX/LX/TX Yes

The 40G QSFP+ transceivers and cables allow for 4x10G mode support with the use of fiber breakout cables, MTP to LC cassettes, or QSFP to SFP+ cables. See the below table for details on the latest supported 40G transceivers.

Interface Type QSFP+ ports
40GBASE-CR4 0.5m-5m
40GBASE-AOC 3m-100m
QSFP-40G-UNIV 150m (OM3) / 150m (OM4), 500m (SM)
QSFP-40G-SRBD 100m (OM3) /150m (OM4)
QSFP-40G-SR4 100m (OM3) / 150m (OM4)
QSFP-40G-XSR4 300m (OM3) / 400m (OM4)
QSFP-40G-PLRL4 1km (1km 4x10G LR/LRL)
QSFP-40G-PLR4 10km (10km 4x10G LR/LRL)
QSFP-40G-LRL4 1km
QSFP-40G-LR4 10km
QSFP-40G-ER4 40km

100G QSFP28 and CFP2 Optics

Interface Type 100G CFP2 Ports 100G QSFP Ports
100GBASE-XSR10 300m OM3 / 400m OM4 Parallel MMF
100GBASE-SR4 100m OM3 / 150m OM4 Parallel MMF
100GBASE-LR4 10km SM Duplex 10km SM Duplex
100GBASE-LRL4 2km SM Duplex
100GBASE-ER4 40km SM Duplex
100GBASE-CWDM4 2km SM duplex
100GBASE-PSM4 500m SM Parallel
100GBASE-AOC 3m to 30m
100GBASE-CR4 1m to 3m
Conclusion

Arista 7500E DWDM solution works in conjunction with passive Optical Mux/Demux devices and in-line amplifiers to support additional bandwidth and extended reaches. Arista 7500E DWDM solution can directly reach up to 80 km without requiring in-line amplification, which is ideal for metro applications. With an Optical Signal to Noise ratio (OSNR) of 11.6dB, it can be used effectively for point to point long-haul applications up to 3,000kms with in-line amplifiers and multiplexers.

Related article : How to Deploy QSFP28 Modules for 100G Deployment

100G QSFP28 PSM4 to Address 500m Links in Data Center

100G QSFP28 PSM4 optics is a type of 100G optical transceiver that provides a low-cost solution to long-reach data center optical interconnects. 100G PSM4 (parallel single-mode 4 lane) standard is mainly targeted to data centers that based on a parallel single-mode infrastructure for a link length of 500 m. Compared with the hot-selling 100GBASE-SR4 and 100GBASE-LR4 optics, 100G QSFP28 PSM4 recently wins the popularity among the overall users. This article will provide a complete specification of the 100G QSFP28 PSM4 transceiver and explain the reason why people would need QSFP28 PSM4.

QSFP28 module

QSFP28 PSM4—A Low-Cost but Long-Reach Solution

100G QSFP28 PSM4 is compliant with 100G PSM4 MSA standard, which defines a point-to-point 100 Gb/s link over eight parallel single-mode fibers (4 transmit and 4 receive) up to at least 500 m. PSM4 uses four identical lanes per direction. Each lane carries a 25G optical transmission. The 100G PSM4 standard is now available in QSFP28 and CFP4 form factor. Table 2 shows the diagram of the 100G QSFP28 PSM4 Specification. 100G PSM4 is a low-cost solution. Its cost structure is driven by the cost of the fiber and the high component count. FS.COM offers the Cisco compatible 100G QSFP28 PSM4 at US$750.00.

diagram of QSFP28 PSM4

As you can see in the above image, 100G QSFP28 PSM4 transceiver uses four parallel fibers (lanes) operating in each direction, with transmission distance up to 500 meters. The source of the QSFP28 PSM4 module is a single uncooled distributed feedback (DFB) laser operating at 1310 nm. It needs either a directly modulated DFB laser (DML) or an external modulator for each fiber. The 100GBASE-PSM4 transceiver usually needs the single-mode ribbon cable with an MTP/MPO connector.

Why Do We Need 100G QSFP28 PSM4?

100G PSM4 is the 100G standard that has been launched by multi-source agreement (MSA) to enable 500m links in data center optical interconnects. But as we all know, there are several popular 100G interfaces out there on the market, such as QSFP28 100GBASE-SR4, QSFP28 100GBASE-LR4, QSFP28 100GBASE-CWDM4, and CFP 100GBASE-LR4, etc. So with so many options, why do we still need 100G QSFP28 PSM4?

To better help you make up your mind, you need to figure out the following questions:

Q1: What are the net link budget differences between PSM4, SR4, LR4 and CWDM?
Table 3 displays the detailed information about these 100G standards.

100GBASE-PSM4 100GBASE-CWDM4 100GBASE-SR4 100GBASE-LR4
4-wavelength CWDM multiplexer and demultiplexer No need Need No need Need
Connector MPO/MTP connector Two LC connectors MPO/MTP connector Two LC connectors
Reach 500 m 2 km 100 m 10 km

Note: the above diagram excludes the actual loss of each link (it is the ideal situation). In fact, WDM solution are at least 7 db worse link budget than PSM4. For a 2 km connectivity, a CWDM module will have to overcome about 10 db additional losses compared to PSM4. And the 100G LR4 optics at 10 km is 12 db higher total loss than PSM4.

Q2: What power targets are achievable for each, and by extension what form factors?
According to the IEEE data sheet, the WDM solutions cannot reasonably fit inside QSFP thermal envelop, while PSM4 can fit inside the QSFP thermal envelope. That means you would need the extra power for the WDM solution of your network. But if you use the QSFP PSM4, this won’t be a problem.

All in all, a 100G QSFP28 PSM4 transceiver with 500m max reach is a optional choice for customers. Because other 100G optics are either too short for practical application in data center or too long and costly. QSFP28 PSM4 modules are much less expensive than the 10 km, 100GBASE-LR4 module, and support longer distance than 100GBASE-SR4 QSFP28.

Summary

QSFP28 PSM4 is the lowest cost solution at under one forth the cost of either WDM alternatives. 100G QSFP28 PSM4 can support a link length of 500 m, which is sufficient for data center interconnect applications. 100G QSFP28 PSM4 also offers the simplest architecture, the most streamlined data path, higher reliability, an easy upgrade path to 100G Ethernet.

100G Direct and Breakout Cabling Solutions

With the emerging high-speed network standards and rapidly advancing technology, fiber optic network is driven to meet the growing demand for faster access to larger volumes of data. Although 10G/40G Ethernet becomes the mainstream of telecommunication market nowadays, organizations of all sizes still need to be prepared to integrate speeds of 100G and beyond. For data center networking, users can choose different solutions based on the different transmission distance need. In general, there are two kinds of 100G fiber optic solutions: direct cabling and breakout cabling. It is essential for users to understand the detailed information of each type of solution in order to select the one that meets their current and future connectivity needs.

How 100G Optics Develop

After the IEEE completing the certification of the first 100G standard for Ethernet networks, the transceiver industry launched a new type of form factors for 100G connectivity—CFP (“C” for 100, and FP for Form factor Pluggable). Compared to the most popular 40G QSFP, the size of CFP transceiver is huge. And most CFP implementations doubled the power consumption per bit. Furthermore, the price per bit increased by a factor of ten. These disadvantages becomes the main obstacles of the popularity of 100G CFP transceivers.

The next version of 100G form factors is the CFP2, CFP4, and the CPAK that are improved upon the CFP. But when compared to the popular 10G SFP+ and 40G QSFP+, none of these new members of the CFP family improved density, power consumption, or cost. Fugure 1 shows the size comparison between CFP2, CFP4 and QSFP28 modules.

100g-transceivers

Then here came the 100G QSFP28. The QSFP28 is the exact same footprint as the 40G QSFP+. The 100G QSFP28 is implemented with four 25-Gbps lanes, Just as the 40G QSFP+ is implemented using four 10-Gbps lanes. In all QSFP versions, both the electrical lanes and the optical lanes operate at the same speed, eliminating the costly gearbox found in CFP, CFP2, and the CPAK. The 100G QSFP28 makes it as easy to deploy 100G networks as 10G networks. When compared to any of the other alternatives, 100G QSFP28 increases density and decreases power and price per bit. That’s why it is fast becoming the universal data center form factor. The following part will move on to talk about the 100G optic cabling solutions.

100G Direct Cabling Solutions

QSFP28 transceiver utilizes either fiber or copper media to achieve 100GbE communication in each direction. This transceiver has 4 individual 25GbE lanes which can be used together to achieve 100GbE throughput or separately as 4 individual 25GbE connections (using 4 SFP28 modules).

For 100G short-reach direct cabling within 100m, 100GBASE-SR4 QSFP28 optical module and 100G QSFP28 cable are good choice. Just from the table list of FS.COM 100G optical modules and cables, we know that 100GBASE-SR4 QSFP28 modules can support up to 100 m on OM4 12 fiber multimode MTP cable. And 100G QSFP28 to QSFP28 direct attach copper cable can support up to 5m and 100G QSFP28 to QSFP28 active optical cable can support up to 10m. Figure 2 describes a 100G direct cabling with the use of QSFP28 to QSFP28 DAC and AOC cables.

100g-qsfp28-solution

For 100G long-haul direct cabling, like 10km, both 100GBASE-LR4 QSFP28 optical module and 100GBASE-LR4 CFP4 transceiver can support up to 10km on single-mode LC patch cables. For longer 100G direct cabling above 10km, the 100GBASE-ER4 CFP is the ideal choice as their transmission distances support up to 40 km.

100G Breakout Cabling Solutions

A breakout cable is a multi-strand cable, typically custom-made, which is divided into multiple duplex cables. For instance, a 40G breakout cable has four individual 10G duplex cables totaling eight strands, while a 100G breakout cable has 10 duplex cables and 20 strands. Figure 3 displays a simple 100G connectivity with 100GBASE-SR4 QSFP28 and QSFP28 to 4SFP28 breakout cables.

gsfp28-to-4sfp28-cable

Between the 100G optical module and 25G optical modules, there always uses the breakout cables connected the two kinds of optical modules, and the common cable solutions are 100G QSFP28 to 4SFP28 Breakout AOC cables or 100G QSFP28 to 4x 25G SFP28 Breakout Direct Attach Passive Copper Cables.

The commonly used 100G breakout cabling solutions is 100G QSFP28 to 4SFP28 DAC. It’s easy to understand how this type of cable function. Just as the QSFP+ breakout cable, the 40GBASE-SR4 QSFP+ optical module at the one end can be connected to 4x10GBASE-SR SFP+ optical modules at the other end.

Conclusion

As IT infrastructures are planning to migrate to 100G data rate, network designers must carefully weigh alternative implementations of such links. With a variety of fibers already deployed, it is important to understand the interoperability of new optics with existing fibers. And for 100G deployment, you are supposed to understand the benefits and challenges of each type of the fiber optic solutions before taking an action. FS.COM’s 100G FHD series covers a full range of 100G optical transceivers and cables, like CFP, CFP2, CFP4, QSFP28, as well as 100G QSFP28 to QSFP28 DAC, 100G QSFP28 to 4SFP28 DAC. Besides the above products, 100G FHD Fiber Enclosures, 100G FHD MTP Modular Cassettes, 100G 160 Fiber 2U Panels and 100G CFP SR10 Cables are also provided. If you want to know more about our products, please contact us directly.

Stay For 40Gbps Network or Scale Up to 100G?

The evolution of bandwidth for data transmission is unstoppable. From the 10Mbps, 100Mbps Ethernet to the 10G or 40/100G Ethernet, telecom manufacturers keep promoting higher internet speed to facilitate people’s daily life. Now, bandwidth speeds of 1Gbps to 10Gbps Ethernet capacity are commonly utilized around the world. However, with the increase in data center and cloud computing technologies, the demand for bandwidth speeds of 40G to 100G Ethernet is growing steadily for carriers and other data consumers.

Just like the dilemma of whether to use the fiber optic cable for high performance or adopt copper cable for the low cost, these high-end data consumers also have the doubt about 40G and 100G. Should we upgrade our capacity to 40Gbps or skip 40Gbpsand migrate directly to 100Gbps Ethernet? This article will help to draw an answer to this dilemma from the aspects of market trend for required bandwidth, cost and performance.

Upgrade Straight to 100G

According to today’s market trend, the tendency is to skip 40Gbps. With demanding users peeling off multiple 10Gbps channels, the 40Gbps pipe becomes quickly utilized. Carriers scaling up to 100Gbps, allows greater flexibility for one’s network infrastructure utilizing multiplexing solutions to carve multiple bandwidth channels from a single pipe. On another scale, the same is true for the consumer market where capacity is increasing from 1Gbps to 10Gbps, skipping 2.5Gbps levels, due to the flexibility and scalability 10Gbps provides at a very similar cost. In many cases, carriers and consumers have decided to skip 40Gbps and acquire 100Gbps for the following reasons and benefits:

100G logo

  • Cost Efficiency—From a network equipment standpoint, often it may be more cost-efficient to upgrade a 10Gbps link to 100Gbps, versus 40Gbps. Essentially, if you should require 60Gbps or say even 80Gbps, additional cards would be needed to support the link in the chassis, whereas a customer may utilize only one card to achieve more than twice the bandwidth at 100Gbps. 100Gbps allows the network to operate within a smaller footprint of a data center, which in turn, reduces power consumption dissipating less heat and thus lower operational costs.
  • Lower Latency—100Gbps provides lower latency capabilities than 40Gbps; many carrier grade vendors are lowering latency on 100Gbps matching latency of traditional 10Gbps traffic.
  • Flexibility—Creates options to provide multiple variations of delivery with handoffs ranging from 10Gbps, 40Gbps or the full 100Gbps pipes.
  • Scalability—Although a customer may not utilize 100Gbps on day one, the ability is there to scale the network with no forklift upgrade at any point, future-proofing the solution well beyond capacity needs.

As consumer’s demands for higher bandwidth continues to rise, many equipment suppliers, who developed some of the first 100 Gigabit Ethernet Router Interfaces, are now working on developing 200Gbps, 400Gbps up to 1 Terabyte interfaces.

This article is not implying that there is no use for 40Gbqs bandwidth level technology. Instead, I suggest that many end consumers are looking to keep up with the acceleration of high bandwidth demands while maintaining the efficiency and technologies needed to support their network infrastructure requirements while reducing operating costs.

100G Optic Solutions

FS.COM 100G transceiver solution offers customers 100 Gigabit Ethernet connectivity options for data center networking, enterprise core aggregation, and service provider transport applications. Various of 100G transceivers including CXP, CFP, CFP2, CFP4 and QSFP28 are available for different applications. The following part will lists two cost-effective 100G solutions.

  • QSFP28 to QSFP28 Interconnection

The QSFP28 is the exact same footprint as the 40G QSFP+, but is implemented with four 25Gbps lanes. To interconnect a multimode QSFP28 link, a 12-fiber MPO/MTP patch cable is required, while for single-mode link (100GBASE-LR4 QSFP28), a duplex LC single-mode patch cable is required. The interconnection of QSFP28 multimode link is similar with the case of QSFP28-100G-SR4 see in the following figure.

100G solution

  • CXP/CFP to CXP/CFP Interconnection

FS.COM’s 24-fiber MPO/MTP assemblies are ideal for 100GBASE-SR10 CXP/CFP to CXP/CFP interconnection in data center, since it is implemented 10 lanes of 10 Gbps. Among the 24 fibers, only 20 fibers in the middle of the connector are used to transmit and receive at 10 Gbps and the 2 top and bottom fibers on the left and right are unused. The following picture shows the interconnection between two 100GBASE-SR10 CXP ports.

CFP to CFP Interconnection

FS.COM provides a full selection of 100G optics including CFP, CFP2, CFP4, QSFP28 (QSFP28-100G-SR4) and QSFP28 DAC cables just as listed above. All of our products are fully compatible with the original brand. In addition, our 100G transceivers offer significant advantages over existing solutions in terms of reduced power dissipation and increased density with the added benefit of pluggability for reduced first installed cost. If you have any requirement, you can send your request to us.