Archives

10GBASE-T SFP+ Copper Module up to 200m – Is It Possible?

The introduction of 10gb SFP+ copper modules made people rethink 10G optical network, and was treated as the thrive of copper cabling. Vendors like Cisco, HPE, Amazon, prolabs and FS.COM provides 10GBase-T SFP+ module around $300 with 30m linking length and 2.5W power consumption, but it is a controversial and expensive copper devices. Today’s article decodes the 10GBASE-T SFP+ copper modules that can support up to 200m, and auto-negotiate to 1G, 2.5G, 5G data rate.

beautiful view

10GBASE-T Copper Can Auto-negotiate to 5G, 2.5G, 1G, 100Mbps, 10Mbps

10GBASE-T SFP+ transceivers, terminated with RJ45 connectors, allow 10G bandwidth over existing infrastructure and reuse Ethernet cables. However, owing to the high price and unstable performance, 10GBASE-T is not usually the type when competing with cost-effective DAC cables, and reliable SFP+ fiber modules. Customers use ideally DAC twinax cables for shorter reach transmission, or if they need longer distance, they would go for fiber SFP+ or SFP+ AOC cables.

10GBASE-T can auto-negotiate to 5G, 2.5G, 1G, 100Mbps, 10Mbps data rate, which is the highlight of this product. For 2.5GBASE-T/5GBASE-T networks, you can use this module.

Is It Possible to Support up to 200m?

The regular 10G copper modules launched by fiber optic vendors are specified to support up to 30m over Cat6a/Cat7 cables. According to wikipedia, 10GBASE-T, or IEEE 802.3an-2006 standard is released to provide 10G connections over unshielded or shielded twisted pair cables, with distances up to 100 meters (Cat6a), 55m (Cat6). What’s more, 10GBASE-T cable infrastructure can also be used for 1000BASE-T allowing a gradual upgrade from 1000BASE-T using auto-negotiation to select which speed to use.

Therefore, 10GBASE-T copper modules can auto-negotiate to lower data rate e.g. 10 Mbps, 100 Mbps, 1 Gbps, 2.5 Gbps, 5 Gbps, 10 Gbps. A new type 10GBASE-T SFP+ from Mikrotik can support all the above five data rates over different link length. The max power consumption is 2.4W, and can only be used in SFP+ ports.

Mikrotik 10Gig SFP+ copper

Table 2 shows the 10GBASE-T Cable Types and max supported lengths.

According to the above table, we can see that it can reach up to 200m over 1000BASE-T network, or at 2.5G 200m using Cat6a STP cables. So please be mindful of where you want to use them.

Isn’t 10GbE Copper Power Hungry?

10GBASE-Cu DAC twinax cables consumes 4-8 Watts power during the operation, while SFP+ 10GBASE-T copper modules draw less (2.5W), and it is not a standard compliant transceiver, hence the shorter distance of 30m. But if dig deeper, we will find that if there were more power, they would use it. So, in order to be fully compatible with 10GBASE-T standard, you need more power.

10GBASE-T SFP+ Module

Today’s fiber SFP+ modules like 10GBASE-SR draw less than 1W, much lower than the 5 to 8 Watts per 10GBASE-T port. Drawing an increase in power by a factor of 5 can seem like an expensive upgrade cost. When factored against servers that can draw up to 1000W or more, the overall proportion is low. For small to mid-sized (SMB) organization switch-server installations, short reach cable runs of less than 45 meters will apply and use even less power and therefore cost less.

Future-Proof 10GBase-T Technology

Although fiber becomes popular with the benefit of delivering flexible cabling, lowest latency, many IT departments still adopt copper cables for switch-to-switch or switch-to-server connections in 10G Ethernet applications. 10GBase-T Copper SFP+ is backward compatible with Fast Ethernet and Gigabit Ethernet and can automatically negotiate to lower speed connections. More importantly, 10GBase-T provides a cost-effective method for migrating from your current network to 10G Ethernet by utilizing your existing RJ-45 copper short connections. Amazon, FS.COM, Prolabs, Mikrotik and HPE supply 10GBAST-T copper transceivers, you can get what you want from them.

TP-Link 8-Port TL-SG1008D Desktop Switch

Ethernet switch usually acts as a hub that connects network devices and segments together while having the intelligence to send data where it needs to go. There are both managed and unmanaged switches. Managed switch as the names implies, can be programmed, while unmanaged switch simple allows Ethernet devices to communicate with one another. Besides, most fiber optic switches have 5, 8, 10, 24 or 48 ports. This article will introduce 5 TP-Link 8-Ports Desktop switch, and its cabling solutions.

8-Port Gigabit Desktop Switch TL-SG1008D

TL-SG1008D is the cost-effective TP-Link 8 port Desktop Gigabit Switch, which sells $24.99 . It has 8 Gigabit Auto-Negotiation RJ45 ports with switching capacity of 10Gbps. The TP-Link 8-Port desktop switch TL-SG1008D offer an easy path to make the transition to Gigabit Ethernet. Its auto-negotiation ports provide smart integration between 10Mbps, 100Mbps, and 1000Mbps hardware. With the innovative energy-efficient technology, the TL-SG1008D can save up to 75%/80% of the power consumption, making it an eco-friendly solution for your home or office network. Moreover, the auto features of TL-SG1008 unmanaged switch make installation plug and play and hassle-free.

TL-SG1008D

    • Easy to Use

TL-SG1008 unmanaged switch has no need to configure. Once setting up in the office or home network, this optical switch will provide you with a high-performance, low-cost, easy-to-use, seamless and standard upgrade to 1000Mbps network. Simply plug and play, an ordinary person can install it. Moreover, auto MDI/MDIX eliminates the need for crossover cables.

    • High-Performance

All 8 ports of desktop switch, featuring non-blocking switching architecture can provide large file transferring and downloading that are compatible with 10Mbps and 100Mbps Ethernet devices. Supports IEEE 802.3x ow control for Full Duplex mode and back pressure for Half Duplex mode.

  • Power down Idle Ports

When a computer or network equipment is off, the corresponding port of a traditional switch will continue to consume considerable amounts of power. The TL-SG1008D can automatically detect the link status of each port and reduce the power consumption of ports that are idle, resulting in up to an 80% reduction in power use. Another great thing about this network switch is that it offers a fanless design, meaning that you won’t hear anything annoying while you are working.

Copper Cabling for Unmanged Switch TL-SG1008D

The TL-SG1008D Switch is equipped with 8 10/100/1000Mbps Auto-Sensing RJ45 ports that is aimed towards budget oriented people. For the price of TL-SG1008D, this low-priced fanless switch will take care of all your intermediate networking needs without a hiccup. Besides you can directly buy the cost-effective copper cables from FS.COM, which will surely save a large sum of money.

ID Cable Type Boot Type Conductor Type Jacket Length
13825 Cat5e UTP Snageless Booted
24AWG, Stranded Bare Copper

 

PVC 0.15-60m/Custom
LSZH
22776 PVC
63764 Non Boot PVC
63634 Cat5e FTP Snageless Booted 26AWG, Stranded Bare Copper PVC
22346 Cat6 UTP Snageless Booted 24AWG, Stranded Bare Copper PVC
63088 LSZH
52067 Non Boot PVC
52173 Cat6 STP Snageless Booted 26AWG, Stranded Bare Copper PVC
23303 Cat6a STP Snageless Booted PVC 0.15-10m/Custom
23319 Snageless Booted LSZH
63503 Cat7 SSTP Snageless Booted 28AWG, Stranded Bare PVC 1-5m
63460 Slim Cat5e UTP Snageless Booted PVC
63118 Slim Cat6 UTP PVC

This is the simple layout of your network.

desktop Switch TL-SG1008D

Conclusion

Choosing the right optical switch is not an easy thing, either the experienced network installer, nor the completely inexperienced one. This article lists the main features of TL-SG1008D fanless switches, which will make sure people don’t have any issue choosing the best network switch in the market. Another great thing that we did to make things easier for you is making sure that you have abundance of options to choose from, from the highest end ones to the budget friendly ones, everything is basically in order for everyone.

Source: www.fiber-optic-solutions.com

Using Pre-terminated Cat6 Cable For Signal Extension

Thanks to the complexity of the fiber optic installation and audio video system, the need for sending multiple signal types and control over long distances has increasingly become intense. Ethernet cables like Cat 5e, Cat 6 and Cat 7, is an indispensable component for home or small business. Nowadays most manufacturers will recommend the use of solid shielded Cat 6 cable with shielded connectors other than using the HDBASE-T chipset for signal extension. This type of cable can be terminated in the field or purchased in specific lengths already terminated. The following article provides a brief introduction to the reasons why we should use Pre-terminated Cat 6 cables for the signal extension.

Cat6 Pre-terminated Trunk cable

Figure 1 shows the UTP Cat6 cables, Pre-terminated trunk cables, FS optical switches, cable manager wire duct.

Brief Outlook: Cat 6 Over Cat5 Cable

Cat5 and Cat6 copper Ethernet cables are the commonly used types for 1G/10G networks. So, what is the benefit of using Cat 6 cable instead of Cat 5?

In short, Cat 5e is a basic wire for home network. It is typically 24 gauge and can run 10 Gigabit network for 328 ft. While Cat 6 was developed to have 10 Gigabit networks. The only problem is that these wires were limited to a range of 164 feet. Above this, their speed will drop to 1Gbqs.

Besides distance and speed, Cat 6 patch cable also has another important difference, it has tighter twists in the cables. This allows each pair of wires to have two-way communication with each other. Cat 5e has an occasional delay and a higher skew than Cat 6 does. This means that even though Cat 5 can run at a speed of a Gigabit, it will appear to be slower.

Pre-terminated Solution that Saves Time, Money and Space

With connectors terminated on each end, Pre-terminated copper bundles provide a time saving and customized solution for reliable and easy to install connectivity. The Pre-terminated cables are made to your exact specifications, so there will be no unused cables left to be stored. No cable waste, faster turnaround and no terminating on site which means less money spent on storage, labor and equipment.

6 jack to 6 jack Cat6 cables

Figure 2 shows 6 Jack to 6 Jack Pre-terminated Copper Trunk Cable.

  • Flexibility, Efficiency and Reliability

The Pre-terminated Cat 6 copper bundles can be supplied in any length up to 60m and both ends have an installed Cat 6A modular jack (UTP). The cable bundle is held together with Velcro wraps at meter intervals and is generally supplied with 6 cables & installed jacks in a bundle. Each end of the Pre-terminated can be easily installed into an unloaded 19 rack mount patch panel, floor distributor or wall outlet.

  • Less labor intensive

Cat 6 Pre-terminated copper bundles require less work on site as no technical skills are needed when installing and connecting the cabling infrastructure. Therefore, this solution eliminates the need for technicians to be on site terminating cable, since the Pre-terminated cables can be easily installed by routing and then loading the Pre-terminated directly into a patch panel.

  • Less Wastage

The installer in a lot of cases has to pay for his waste to be removed from site on many projects, especially if they include cable drums, more importantly the installer is purchasing a more accurate quantity of cable, they are buying by the meter and not by the drum, how many installers have their facilities cluttered up with odd lengths of cables in boxes hoping for a project that will use them up.

Pre-Terminated Cable Limitations

  • Specialty cables must be planned for and ordered in advance
  • Inflexible in field run situations
  • Not feasible for retrofit and upgrade projects

Conclusion

Just as anything else, careful planning and product selection will be the key to a successful installation. You must consider resolution, distance, signal type or types, and physical layout when choosing a signal extension product. FS.COM Pre-terminated Cat 6 copper bundles offer rapid deployment coupled with guaranteed performance. Please feel free to contact us if you are interested.

Original Source : www.fiber-optic-solutions.com

How to Understand PoE and PoE+ Switches

Power-over-Ethernet (PoE) is the technology that allows network switches to transmit power and data through an Ethernet cable at the same time. PoE switch streamlines both of the processes of powering and providing data to the device, which makes it a straightforward and reliable device for home network and small enterprise application. This article describes two types of PoE (PoE and PoE+) that are commonly used and provides information on what types of PoE can be used according to different applications.

PoE Versus non-PoE Technology

Power over Ethernet technology facilitates powering a device (such as an IP phone, IP Surveillance Camera, or NVR recorder) over the same Ethernet cable as the data traffic. Figure 1 shows an Ethernet Network with IP camera, PoE Switch, NVR recorder and Wireless router. Compared to non-PoE devices, PoE devices feature with flexibility that allow you to easily place endpoints anywhere in the business, even places where it might be difficult to run a power outlet.

Wireless Home Network with POE switch

PoE Versus PoE+ Technology

PoE was first defined in the IEEE 802.3af standard. PoE devices utilize PoE standard, which can provide up to 15.4W of DC power to each port. A later standard, IEEE 802.3at, known as PoE+, increases the amount of power to 30 W. The major difference between 802.3af (PoE) and 802.3at (PoE+) is that PoE+ PSEs can provide almost twice as much power over a single Ethernet cable.

PoE and PoE+

Can PoE+ devices work over PoE Ports, Or vice versa? The PoE+ standard provides support for legacy PoE devices, meaning that an IEEE 802.3af powered device (PD) can operate normally when connected to IEEE 802.3at (PoE+) power sourcing equipment (PSE). PoE+ PSEs can supply power to both PoE and PoE+ PDs. However, as PoE+ PDs require more power than PoE PSEs can provide, PoE PSEs can only supply power to PoE PDs.

PoE Switch Or PoE+ Switch

Whether to use PoE or PoE+ switch for your network, you need to calculate your required power budget carefully for all of the PDs you plan to connect. PoE+ IEEE 802.3at devices can supply a maximum of 30 watts per port, while PoE IEEE 802.3af devices can supply a maximum of 15.4 watts per port. However, some power is always lost over the length of the cable, and more power is lost over longer cable runs. The minimum guaranteed power available at the PD is 12.95 watts per port for PoE and 25.5 watts per port for PoE+.

For most endpoints, 802.3af is sufficient but there are devices, such as Video phones or Access Points with multiple radios, which have higher power needs. It’s important to point out that there are other PoE standards currently being developed that will deliver even high levels of power for future applications. Optical switches have a power budget set aside for running the switch itself, and also an amount of power dedicated for PoE endpoints.

POE switch

FS PoE Switches

FS POE switches can supply power to network equipment such as weather-proof IP cameras, AP and IP telephones. They are featured with high flexibility, high stability and high resistance to electromagnetic interference. All FS PoE switches come with a one-year limited warranty, including any quality problems during the free maintenance. The following above shows 1G PoE Switch with 24 1000BASE-T and 4 SFP ports.

Original Source: How to Understand PoE and PoE+ Switches

What Are OM1, OM2, OM3 and OM4 Fiber Patch Cable?

Fiber optic cable can be divided into several types. Usually we see single-mode and multimode fiber types available on the market. Multimode fibers are described by their core and cladding diameters. The diameter of the multi-mode fiber is either 50/125 µm or 62.5/125 µm. At present, there are four commonly used OM (multimode) fibers: OM1, OM2, OM3 and OM4. Each type of them has different characteristics.

OM1 OM2 OM3 OM4 OM5 fiber cables

The picture above shows the development of OM multimode fibers. The Lime Green OM5 fibers are newly released and sure to be the mainstream transmission media in the near future. For more information about OM5 fibers, please turn to: OM5 Fiber Cable – Is It Worthwhile for 40G/100G SWDM4 Cabling Solution

OM Multimode Fiber Standard

Each “OM” has a minimum Modal Bandwidth (MBW) requirement. OM1, OM2, and OM3 are determined by the ISO 11801 standard, which is based on the modal bandwidth of the multi-mode fiber. In August of 2009, TIA/EIA approved and released 492AAAD, which defines the performance criteria for OM4. While they developed the original “OM” designations, IEC has not yet released an approved equivalent standard that will eventually be documented as fiber type A1a.3 in IEC 60793-2-10.

OM1, OM2, OM3 and OM4 multi-mode fiber

According to the above table,

  • OM1 cable typically comes with an orange jacket and has a core size of 62.5 micrometers (µm). It can support 10 Gigabit Ethernet at lengths up 33 meters. It is most commonly used for 100 Megabit Ethernet applications
  • OM2 also has a suggested jacket color of orange. Its core size is 50µm instead of 62.5µm. It supports 10 Gigabit Ethernet at lengths up to 82 meters but is more commonly used for 1 Gigabit Ethernet applications.
  • OM3 has a suggested jacket color of aqua. Like OM2, its core size is 50µm. OM3 supports 10 Gigabit Ethernet at lengths up to 300 meters. Besides OM3 is able to support 40 Gigabit and 100 Gigabit Ethernet up to 100 meters. 10 Gigabit Ethernet is its most common use.
  • OM4 also has a suggested jacket color of aqua. It is a further improvement to OM3. It also uses a 50µm core but it supports 10 Gigabit Ethernet at lengths up 550 meters and it supports 100 Gigabit Ethernet at lengths up to 150 meters.

OM1 Vs. OM2 Vs. OM3 Vs. OM4 Fiber

There are several differences between four kinds of multi-mode fiber, and we can see them clearly from the table below:

OM1, OM2, OM3 and OM4 multi-mode fiber

  • Diameter: The core diameter of OM1 is 62.5 µm , however, core diameter of the OM2, OM3 and OM4 is 50 µm.
  • Jacket Color: OM1 and OM2 MMF are generally defined by an orange jacket. OM3 and OM4 are usually defined with an aqua jacket.
  • Optical Source: OM1 and OM2 commonly use LED light source. However, OM3 and OM4 usually use 850 nm VCSELs.
  • Bandwidth: At 850 nm the minimal modal bandwidth of OM1 is 200MHz*km, of OM2 is 500MHz*km, of OM3 is 2000MHz*km, of OM4 is 4700MHz*km.

Why Are OM3 & OM4 Fiber Superior to OM1 & OM2?

10G OM3Both OM1 and OM2 work with LED based equipment that can send hundreds of modes of light down the cable, while OM3 and OM4 fiber are optimized for laser (eg. VCSEL) based equipment that uses fewer modes of light. LEDs can not be turned on/off fast enough to support higher bandwidth applications, while VCSELs are capable of modulation over 10 Gbit/s and are used in many high speed networks. For this reason, OM3 and OM4 are the multimode fibers included in the 40G and 100G Ethernet standard. Now OM1 and OM2 are usually used for 1G which are not suitable for today’s higher-speed networks. OM3 and OM4 are used for 10G mostly at present. But in the future, since OM3 and OM4 can support the 40G and 100G, which may make them the tendency.

Original Source: www.fiber-optic-solutions.com/what-are-om1-om2-om3-and-om4.html

400G CFP8 PAM4 & 400GBASE-SR16 NRZ Transceiver Modules

With the price of 100G QSFP28 optics and CFP form factors (CFP module/CFP2/CFP4) dropping down in 2017, 100G technology is becoming more and more popular among data center managers and IT pros in order to cope with the ever-lasting bandwidth needs. However, 100G is not the finish line. CFP multimode source agreement (MSA) demonstrated CFP8 (16X 25 Gb/s) form factor for 400 Gigabit Ethernet at OFC 2017. Although CFP8 module is still in development, it is assured to be popular in the near future. Therefore, this article will have a clearer introduction to 400G CFP8 PAM4 and NRZ modules, and compare with the former CFP modules and 400G CDFP.

100G CFP to 400G CFP8

Introduction to 400GbE CFP8 Modules

CFP8 module is the latest developing CFP from factor version, which supports eight times and four times the bandwidth density of CFP and CFP2 form factors, respectively. The CFP8 interface supports up to 16 different lanes in each direction with nominal signaling rates of 25Gb/s or 26Gb/s per lane, and either NRZ or PAM4 signaling. As the above image shows, CFP8 is approximately the size of a CFP2 optics. This interface has been generally specified to allow for 16 x 25 Gb/s and 8 x 50 Gb/s mode.

CFP8 functional diagram

Example IEEE specifications supported by CFP8:

  • 400GBASE-SR16 parallel MMF (16x25G NRZ)
  • 400GBASE-FR8/LR8 duplex SMF (8x50G PAM4 WDM)
  • 400GBASE-DR4 parallel SMF (4x100G PAM4)
  • CDAUI-16, CDAUI-8

400G CFP8 FR8 and LR8 Transceivers with PAM4 Technology

CFP8 PAM4 optics, compliant with IEEE 802.3bs 400GBASE-FR8 & LR8 electrical interface specifications, offers higher receiver bandwidth capacity for reach up to 2km and 10km. The 400GBASE-FR8 & LR8 consumes less than half the power per GB compared to a 100G CFP4 msa solution. CFP8 optics uses LC duplex fiber cables.

PAM4 and NRZ

The PAM4 stands for pulse amplitude modulation with four levels. Instead of driving the laser to generate one of the two output amplitudes, like NRZ, PAM4 technology generates four different amplitude levels, meaning a network based on PAM-4 can send twice as much data as an NRZ version.

CFP8 400GBASE-SR16 with NRZ Technology

CFP8 400GBASE-SR16 modules focus on non-return to zero (NRZ) signal modulation Scheme. To use an analogy, it means you’re sending signals in the most simple format: “light on” and “light off.” A ‘1” is transmitted as pulse of light whereas ‘0” is no light output. Based on the currently available fast VCSEL light sources only achieving data rates of 25G, sixteen channels must transmit in parallel to create a 400G data stream.

Due to the design simplicity NRZ, the modulation format of choice for all data rates up to 25Gb/s. 400GBASE-SR16 CFP8 transceivers requires 16 fiber pairs to support a total of 400Gb/s with MPO multimode cables.

What’s New With CFP8 Module?

A CFP8 module is a hot pluggable module. Compared with the former modules, the control and status reporting functions between a host and a CFP8 module use non-data control and status reporting pins on the 124-pin connector. There are three Hardware Control pins, two Hardware Alarm pins, and four pins dedicated to the MDIO interface.

Compared to CFP2/CFP4 MSA Optics

CFP8 is the proposed CFP8 from factor by MSA member companies. It maintains the large size of CFP form factor (nearly the size of CFP2, larger than CFP4 MSA modules), but supports 4x100G i.e. 4x the CFP2. Besides this, CFP8 uses less power than the former CFP form factor modules. There are 400GBASE-SR16 for parallel MMF 16x25G NRZ, and 400GBase-FR8/LR8 duplex SMF 8x50G PAM4 WDM.

CFP8 Vs. CDFP

CFP8 is not the first released 16x25G= 400G modules, but CDFP. 400G CDFP module (CD=400 in Latin), is the four generation CFP form factor. Providing a high level of integration, performance and long-term reliability, the CDFP 400 Gbps interface is available in short- and long-body versions. The specifications are compatible for use with direct attach cables, active optical cables, and connectorized optical modules. The CDFP module will support:

  • 5 meter direct attach cables
  • 100 meter multimode fiber
  • 500 meter parallel single‐mode fiber
  • 2 kilometers of duplex single‐mode fiber

The compact modules are well suited for low power applications using copper, VCSEL or silicon photonics based technology. They also targeted InfiniBand EDR hydra cables and 128GFC applications but so far little market segment pick up. Though relatively new with 2014 and 2015 rev releases, CDFP may be short lived due to the smaller more efficient developing set of CFP8 solutions.

Latest Trend With 400 Gb/s in the Industry

While 400 GbE standard is still a few years away, the need for 400 Gb/s interfaces is here today. The CDFP form factor is already being used in proprietary interfaces to interconnect high performance servers and will soon be used to interconnect switch and router chassis. 400G CFP8 FR8/LR8 PAM4 and 400GBASE-SR16 modules had been displayed at OFC 2017. Finisar, Fujitsu, and oclaro, etc MSA member enterprises will introduce low profile 400G modules in a short period.

These proprietary chassis interconnects have always been massively parallel and will continue because they provide the massive bandwidth needed to interconnect equipment so that multiple chassis perform as one big chassis. While 16 lanes is a fairly wide interface, multiple applications need the maximum amount of bandwidth that can only be provided by many parallel lanes running at the fastest speed available. It seem that CFP8 with the same 16 MPO connectors has much potential than CDFP modules. FS.COM offers a large stock MSA-compliant optical transceivers, including 100G CFP/CFP2/CFP4 MSA, CXP, and QSFP28 transceiver modules. We will keep in path with the informative world, and provide the best services & telecom products to all of our customers.

Original Source: 400G CFP8 PAM4 & 400GBASE-SR16 NRZ Transceiver Modules

Introduction to Semiconductor Optical Amplifier (SOA)

Optical amplifier, with the introduction in 1990s, conquered the regenerator technology and opened doors to the WDM technology. It is mainly used to amplify an optical signal directly, without the need to first convert it to an electrical signal. There are many types of optical amplifiers, namely Raman amplifiers, erbium doped-fiber amplifiers (EDFAs), and semiconductor optical amplifier (SOA). This article will make a clearer introduction to SOA amplifier, and analyze its advantages and disadvantages.

transport network system

The Basics of Semiconductor Optical Amplifier (SOA)

SOA optical amplifiers use the semiconductor as the gain medium, which are designed to be used in general applications to increase optical launch power to compensate for loss of other optical devices. Semiconductor optical amplifiers are often adopted in telecommunication systems in the form of fiber-pigtailed components, operating at signal wavelengths between 0.85 µm and 1.6 µm and generating gains of up to 30 dB. Semiconductor optical amplifier, available in 1310nm, 1400nm, 1500nm, 1600nm wavelength, can be used with singlemode or polarization maintaining fiber input/output.

Key Points of SOA Amplifier

  • 1310 nm, 1400 nm, 1550 nm and 1610 nm wavelength selectable
  • High fiber-to-fiber gain of 20 dB
  • Up to 16 dBm output
  • 1 MHz with 10 ns pulse width (optional)
  • PM Panda fiber input/output (optional)
  • Similar to lasers, but with non-reflecting ends and broad wavelength emission
  • Incoming optical signal stimulates emission of light at its own wavelength
  • Process continues through cavity to amplify signal

Working principle of SOA amplifier

The basic working principle of a SOA is the same as a semiconductor laser but without feedback. SOAs amplify incident light through simulated emission. When the light traveling through the active region, it causes these electrons to lose energy in the form of photons and get back to the ground state. Those stimulated photons have the same wavelength as the optical signal, thus amplifying the optical signal.

working principle of SOA
SOA Over EFDA in DWDM Networks

As the solution below, 120km Metro Networks by Using an SOA amplifier. You may wonder why not use EDFA in the above networks.

SOA amplifier

Theoretically, SOA optical amplifiers are not comparable with EDFA in the terms of performance. The noise figure of SOA optical amplifier is typically higher, the gain bandwidth can be similar, SOAs exhibit much stronger nonlinear distortions in the form of self-phase modulation and four-wave mixing. Yet, the semiconductor optical amplifier is of small size and electrical pumped, which is often less expensive than EDFA. Additionally, SOA can be run with a low power laser.

How to Choose SOA Optical Amplifier?

When selecting SOA amplifier, you have to check the every detailed parameter in the product data sheet. But, seriously, do you understand it? No, please read the following part.

The key parameters used to characterize a SOA amplifier are gain, gain bandwidth, saturation output power and noise.

Gain is the factor by which the input signal is amplified and is measured as the ratio of output power to input power (in dB). A higher gain results in higher output optical signal.

Gain bandwidth defines the range of bandwidth where the amplification functions. A wide gain bandwidth is desirable to amplify a wide range of signal wavelengths.

Saturation output power is the maximum output power attainable after amplification beyond which no amplification is reached. It is important that the SOA has a high power saturation level to remain in the linear working region and to have higher dynamic range.

Noise defines the undesired signal within the signal bandwidth which arises due to physical processing in the amplifier. A parameter called noise figure is used to measure the impact of noise which is typically around 5dB.

Conclusion

SOA amplifier is the economic, high-performance solution for long-hual WDM networks. SOA amplifier, due to its features, can be used in Booster and in-line amplification, optical network, general purpose test and measurement and fiber sensing. However, it also has its limit. In semiconductor optical amplifiers, electron-hole recombination occurs which will affect the performance of the whole line. FS offers EDFA, SOA, Raman optical amplifiers of excellent quality and price. For more detailed information, please feel free to contact us.

Original Source: Semiconductor Optical Amplifier